首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Inertia-induced cross-stream migration has been recently exploited for precise position of particles in confined channel flows. In this work, a three-dimensional finite volume based immersed boundary method has been developed to study the lateral migration and hydrodynamic self-assembly of neutrally-buoyant particles in pressure-driven flows. Simulation results show that, in 2D channel flows, the equilibrium position for a circular particle is closer to the centreline for larger particle Reynolds number due to the increasing flow rate, while in 3D square duct flow, the equilibrium position for a spherical particle is near a face centre and is closer to the wall for larger particle Reynolds number. Self-assembly of a pair of particles is observed in 3D square duct flows but not in 2D channel flows. Mechanisms for the self-assembly are discussed.  相似文献   

2.
A turbulent channel flow and the flow around a cubic obstacle are calculated by the moving particle semi‐implicit method with the subparticle‐scale turbulent model and a wall model, which is based on the zero equation RANS (Reynolds Averaged Navier‐Stokes). The wall model is useful in practical problems that often involve high Reynolds numbers and wall turbulence, because it is difficult to keep high resolution in the near‐wall region in particle simulation. A turbulent channel flow is calculated by the present method to validate our wall model. The mean velocity distribution agrees with the log‐law velocity profile near the wall. Statistical values are also the same order and tendency as experimental results with emulating viscous layer by the wall model. We also investigated the influence of numerical oscillations on turbulence analysis in using the moving particle semi‐implicit method. Finally, the turbulent flow around a cubic obstacle is calculated by the present method to demonstrate capability of calculating practical turbulent flows. Three characteristic eddies appear in front of, over, and in the back of the cube both in our calculation and the experimental result that was obtained by Martinuzzi and Tropea. Mean velocity and turbulent intensity profiles are predicted in the same order and have similar tendency as the experimental result. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Recently Lee and Balachandar proposed analytically-based expressions for drag and lift coefficients for a spherical particle moving on a flat wall in a linear shear flow at finite Reynolds number. In order to evaluate the accuracy of these expressions, we have conducted direct numerical simulations of a rolling particle for shear Reynolds number up to 100. We assume that the particle rolls on a horizontal flat wall with a small gap separating the particle from the wall (L = 0.505) and thus avoiding the logarithmic singularity. The influence of the shear Reynolds number and the translational velocity of the particle on the hydrodynamic forces of the particle was investigated under both transient and the final drag-free and torque-free steady state. It is observed that the quasi-steady drag and lift expressions of Lee and Balachandar provide good approximation for the terminal state of the particle motion ranging from perfect sliding to perfect rolling. With regards to transient particle motion in a wall-bounded shear flow it is observed that the above validated quasi-steady drag and lift forces must be supplemented with appropriate wall-corrected added-mass and history forces in order to accurately predict the time-dependent approach to the terminal steady state. Quantitative comparison with the actual particle motion computed in the numerical simulations shows that the theoretical models quite effective in predicting rolling/sliding motion of a particle in a wall-bounded shear flow at moderate Re.  相似文献   

4.
A semianalytical study of the creeping flow caused by a spherical fluid or solid particle with a slip surface translating in a viscous fluid within a spherical cavity along the line connecting their centers is presented in the quasisteady limit of small Reynolds number. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the fundamental solutions in the two spherical coordinate systems based on both the particle and cavity. The boundary conditions on the particle surface and cavity wall are satisfied by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are obtained with good convergence for various values of the ratio of particle-to-cavity radii, the relative distance between the centers of the particle and cavity, the relative viscosity or slip coefficient of the particle, and the slip coefficient of the cavity wall. In the limits of the motions of a spherical particle in a concentric cavity and near a cavity wall with a small curvature, our drag results are in good agreement with the available solutions in the literature. As expected, the boundary-corrected drag force exerted on the particle for all cases is a monotonic increasing function of the ratio of particle-to-cavity radii, and becomes infinite in the touching limit. For a specified ratio of particle-to-cavity radii, the drag force is minimal when the particle is situated at the cavity center and increases monotonically with its relative distance from the cavity center to infinity in the limit as it is located extremely away from the cavity center. The drag force acting on the particle, in general, increases with an increase in its relative viscosity or with a decrease in its slip coefficient for a given configuration, but surprisingly, there are exceptions when the ratio of particle-to-cavity radii is large.  相似文献   

5.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

6.
In this paper a model was developed to describe the shear flow resistance force and torque acting on a fine particle as it slides on the slip surface of a rising gas bubble. The shear flow close to the bubble surface was predicted using a Taylor series and the numerical data obtained from the Navier–Stokes equations as a function of the polar coordinates at the bubble surface, the bubble Reynolds number, and the gas hold-up. The particle size was considered to be sufficiently small relative to the bubble size that the bubble surface could be locally approximated to a planar interface. The Stokes equation for the disturbance shear flows was solved for the velocity components and pressure using series of bispherical coordinates and the boundary conditions at the no-slip particle surface and the slip bubble surface. The solutions for the disturbance flows were then used to calculate the flow resistance force and torque on the particle as a function of the separation distance between the bubble and particle surfaces. The resistance functions were determined by dividing the actual force and torque by the corresponding (Stokes) force and torque in the bulk phase. Finally, numerical and simplified analytical rational approximate solutions for force correction factors for sliding particles as a function of the (whole range of the) separation distance are presented, which are in good agreement with the exact numerical result and can be readily applied to more general modelling of the bubble–particle interactions.  相似文献   

7.
谢明亮  林建忠 《应用力学学报》2007,24(3):I0001-I0015
分析了有压力梯度的边界层两相流动稳定性,推导出类似于Saffman理论的修正的稳定性方程,数值计算采用高精度的谱方法。结果说明,压力梯度对边界层两相流动稳定性有显著的影响,顺压梯度增强流动稳定性,而逆压梯度则促进流动失稳。在不同的压力梯度和浓度下,Stokes数对流动稳定性的影响是一致的,存在一个临界Stokes数,小Stokes数促进流动失稳,而大Stokes数则提高临界雷诺数,抑制流动失稳的最佳Stokes数为10的量级。  相似文献   

8.
A direct‐forcing pressure correction method is developed to simulate fluid–particle interaction problems. In this paper, the sedimentation flow is investigated. This method uses a pressure correction method to solve incompressible flow fields. A direct‐forcing method is introduced to capture the particle motions. It is found that the direct‐forcing method can also be served as a wall‐boundary condition. By applying Gauss's divergence theorem, the formulas for computing the hydrodynamic force and torque acting on the particle from flows are derived from the volume integral of the particle instead of the particle surface. The order of accuracy of the present method is demonstrated by the errors of velocity, pressure, and wall stress. To demonstrate the efficiency and capability of the present method, sedimentations of many spherical particles in an enclosure are simulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In the slow flows of a strongly and nonuniformly heated gas, in the continuum regime (Kn → 0) thermal stresses may be present. The theory of slow nonisothermal continuum gas flows with account for thermal stresses was developed in 1969–1974. The action of the thermal stresses on the gas results in certain paradoxical effects, including the reversal of the direction of the force exerted on a spherical particle in Stokes flow. The propulsion force effect is manifested at large but finite temperature differences between the particle and the gas. This study is devoted to the thermal-stress effect on the drag of a strongly heated spherical particle traveling slowly in a gas for small Knudsen numbers (M ~ Kn → 0), small but finite Reynolds numbers (Re ≤ 1), a linear temperature dependence of the transport coefficients µ ∝ T, and large but finite temperature differences ((T w ? T )/T M8 ~ 1). Two different systems of equations are solved numerically: the simplified Navier-Stokes equations and the modified Navier-Stokes equations with account for the thermal stresses.  相似文献   

10.
Large-eddy simulations (LES) of particle-laden turbulent flows are presented in order to investigate the effects of particle response time on the dispersion patterns of a space developing flow with an obstruction, where solid particles are injected inside the wake of an obstacle [Vincont, J.Y., Simoens, S., Ayrault M., Wallace, J.M., 2000. Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle. J. Fluid Mech. 424, 127–167]. The numerical method is based on a fully explicit fractional step approach and finite-differences on Cartesian grids, using the immersed boundary method (IBM) to represent the existence of solid obstacles. Two different turbulence models have been tested, the classical Smagorinsky turbulence model and the filtered structure function model. The dispersed phase was modelled either by an Eulerian approach or a Lagrangian particle tracking scheme of solid particles with Stokes numbers in the range St = 0–25, assuming one-way coupling between the two phases. A very good agreement was observed between the Lagrangian and Eulerian approaches. The effect of particle size was found to significantly differentiate the dispersion pattern for the inhomogeneous flow over the obstacle. Although in homogeneous flows like particle-laden turbulent channels near-wall particle clustering increases monotonically with particle size, for the examined flow over an obstacle, preferential concentration effects were stronger only for an intermediate range of Stokes numbers.  相似文献   

11.
The problem of the quasisteady motion of a spherical fluid or solid particle with a slip-flow surface in a viscous fluid perpendicular to two parallel plane walls at an arbitrary position between them is investigated theoretically in the limit of small Reynolds number. To solve the axisymmetric Stokes equation for the fluid velocity field, a general solution is constructed from the superposition of the fundamental solutions in both circular cylindrical and spherical coordinate systems. The boundary conditions are enforced first at the plane walls by the Hankel transform and then on the particle surface by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are obtained with good convergence for various values of the relative viscosity or slip coefficient of the particle and of the relative separation distances between the particle and the confining walls. For the motions of a spherical particle normal to a single plane wall and of a no-slip sphere perpendicular to two plane walls, our drag results are in good agreement with the available solutions in the literature for all relative particle-to-wall spacings. The boundary-corrected drag force acting on the particle in general increases with an increase in its relative viscosity or with a decrease in its slip coefficient for a given geometry, but there are exceptions. For a specified wall-to-wall spacing, the drag force is minimal when the particle is situated midway between the two plane walls and increases monotonically when it approaches either of the walls. The boundary effect on the particle motion normal to two plane walls is found to be significant and much stronger than that parallel to them.  相似文献   

12.
The slow viscous flow problem of an arbitrary solid particle in motion near a planar wall is recast into a boundary integral formulation. The present formulation employs the Green function appropriate to the planar wall problem and is developed in sufficient generality to allow calculations for arbitrary particles in any base flow which satisfies Stokes equations and no-slip on the wall. The resulting integral equations are easily discretized and solved for the particle surface tractions. Calculations are performed for axisymmetric motions of a variety of ellips?ids near the planar wall. Agreement with existing theory is excellent.  相似文献   

13.
B. Y. Wang  Y. Xiong  L. X. Qi 《Shock Waves》2006,15(5):363-373
The present paper studies numerical modelling of near-wall two-phase flows induced by a normal shock wave moving at a constant speed, over a micron-sized particles bed. In this two-fluid model, the possibility of particle trajectory intersection is considered and a full Lagrangian formulation of the dispersed phase is introduced. The finiteness of the Reynolds and Mach numbers of the flow around a particle as well as the fineness of the particle sizes are taken into account in describing the interactions between the carrier- and dispersed-phases. For the small mass-loading ratio case, the numerical simulation of flow structure of the two phases is implemented and the profiles of the particle number density are obtained under the constant-flux condition on the wall. The effects of the shock Mach number and the particle size and material density on particle entrainment motion are discussed in detail. The obtained results indicate that interphase non-equilibrium in the velocity and temperature is a common feature for this type of flows and a local particle accumulation zone may form near the envelope of the particle trajectory family.  相似文献   

14.
Within the framework of the two-fluid approach, a variant of a heterogeneous-medium model which takes into account a finite volume fraction of the inclusions and a small but finite phase velocity slip is proposed. The interphase momentum exchange is described by the Stokes force with the Brinkman correction for the finite particle volume fraction. The suspension viscosity depends on the particle volume fraction in accordance with the Einstein formula. Within the framework of the model constructed, a formulation of the problem of linear stability of plane-parallel two-phase flows is proposed. As an example, the stability of a channel suspension flow is considered. The system of equations for small disturbances with the boundary conditions is reduced to an eigenvalue problem for a fourth-order ordinary differential equation. Using the orthogonalization method, the dependence of the critical Reynolds number on the governing nondimensional parameters of the problem is studied numerically. It is shown that taking a finite volume fraction of the inclusions into account significantly affects the laminar-turbulent transition limit.  相似文献   

15.
Direct numerical simulations (DNS) of incompressible turbulent channel flows coupled with Lagrangian particle tracking are performed to study the characteristics of ejections that surround solid particles. The behavior of particles in dilute turbulent channel flows, without particle collisions and without feedback of particles on the carrier fluid, is studied using high Reynolds number DNS (Re = 12,500). The results show that particles moving away from the wall are surrounded by ejections, confirming previous studies on this issue. A threshold value separating ejections with only upward moving particles is established. When normalized by the square root of the Stokes number and the square of the friction velocity, the threshold profiles follow the same qualitative trends, for all the parameters tested in this study, in the range of the experiments. When compared to suspension thresholds proposed by other studies in the Shields diagram, our simulations predict a much larger value because of the measure used to characterize the fluid and the criterion chosen to decide whether particles are influenced by the surrounding fluid. However, for intermediate particle Reynolds numbers, the threshold proposed here is in fair agreement with the theoretical criterion proposed by Bagnold (1966) [Bagnold, R., 1966. Geological Survey Professional Paper, vol. 422-1]. Nevertheless, further studies will be conducted to understand the normalization of the threshold.  相似文献   

16.
Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4 :2244–2251; Int. J. Multiphase Flow 2000; 26 :1583–1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
We present the first measurements of relative velocity statistics of inertial particles in a homogeneous isotropic turbulent flow with three-dimensional holographic particle image velocimetry (holographic PIV). From the measurements we are able to obtain the radial relative velocity probability density function (PDF) conditioned on the interparticle separation distance, for distances on the order of the Kolmogorov length scale. Together with measurements of the three-dimensional radial distribution function (RDF) in our turbulence chamber, these statistics, in principle, can be used to determine interparticle collision rates via the formula derived by Sundaram and Collins (1997). In addition, we show temporal development of the RDF, which reveals the existence of an extended quasi-steady-state regime in our facility. Over this regime the measured two-particle statistics are compared to direct numerical simulations (DNS) with encouraging qualitative agreement. Statistics at the same Reynolds number but different Stokes numbers demonstrate the ability of the experiment to correctly capture the trends associated with particles of different inertia. Our results further indicate that even at moderate Stokes numbers turbulence may enhance collision rates significantly. Such experimental investigations may prove valuable in validating, guiding and refining numerical models of particle dynamics in turbulent flows.  相似文献   

18.
A numerical study on the flow past a square cylinder placed parallel to a wall, which is moving at the speed of the far field has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the cylinder to wall separation length. The governing unsteady Navier–Stokes equations are discretized through the finite volume method on a staggered grid system. A SIMPLE type of algorithm has been used to compute the discretized equations iteratively. A shear layer of negative vortex generates along the surface of the wall, which influences the vortex shedding behind the cylinder. The flow‐field is distinct from the flow in presence of a stationary wall. An alternate vortex shedding occurs for all values of gap height in the unsteady regime of the flow. The strong positive vortex pushes the negative vortex upwards in the wake. The gap flow in the undersurface of the cylinder is strong and the velocity profile overshoots. The cylinder experiences a downward force for certain values of the Reynolds number and gap height. The drag and lift are higher at lower values of the Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The calculation of the diffusive flux of matter to the surface of a body in a fluid stream is one of the basic problems of physicochemical hydrodynamics and finds application in chemical macrokinetics [1].The limiting diffusive flux to a solid spherical particle in a viscous incompressible fluid flow was calculated by Levich [2] under Stokes flow conditions, i.e., for Reynolds numbers R0.In the following we obtain the solution of this problem for finite Reynolds numbers. The solution is based on the results of a determination of the flow field by matching the asymptotic outer (Oseen) and inner (Stokes) expansions of the stream function [2]. Comparison with numerical calculations and experiments [3] shows that the solution obtained with this method describes very well the flow past the sphere over a wide range of values of R.  相似文献   

20.
The micro-and macro-time scales in two-phaseturbulent channel flows are investigated using the direct numerical simulation and the Lagrangian particle trajectorymethods for the fluid-and the particle-phases,respectively.Lagrangian and Eulerian time scales of both phases are calculated using velocity correlation functions.Due to flowanisotropy,micro-time scales are not the same with the theoretical estimations in large Reynolds number(isotropic) turbulence.Lagrangian macro-time scales of particle-phaseand of fluid-phase seen by particles are both dependent onparticle Stokes number.The fluid-phase Lagrangian integral time scales increase with distance from the wall,longerthan those time scales seen by particles.The Eulerian integral macro-time scales increase in near-wall regions but decrease in out-layer regions.The moving Eulerian time scalesare also investigated and compared with Lagrangian integraltime scales,and in good agreement with previous measurements and numerical predictions.For the fluid particles themicro Eulerian time scales are longer than the Lagrangianones in the near wall regions,while away from the walls themicro Lagrangian time scales are longer.The Lagrangianintegral time scales are longer than the Eulerian ones.Theresults are useful for further understanding two-phase flowphysics and especially for constructing accurate predictionmodels of inertial particle dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号