共查询到20条相似文献,搜索用时 0 毫秒
1.
The 4f-4f emissions from lanthanide trication (Ln3+) complexes are widely used in bioimaging probes. The emission intensity from Ln3+ depends on the surroundings, and thus, the design of appropriate photo-antenna ligands is indispensable. In this study, we focus on two probes for detecting hydrogen peroxide, for which emission intensities from Tb3+ are enhanced chemo-selectively by the H2O2-mediated oxidation of ligands. To understand the mechanism, the Gibbs free energy profiles of the ground and excited states related to emission and quenching are computed by combining our approximation—called the energy shift method—and density functional theory. The different emission intensities are mainly attributed to different activation barriers for excitation energy transfer from the ligand-centered triplet (T1) to the Tb3+-centered excited state. Additionally, quenching from T1 to the ground state via intersystem crossing was inhibited by intramolecular hydrogen bonds only in the highly emissive Tb3+ complexes. © 2018 Wiley Periodicals, Inc. 相似文献
2.
Triply excited states of many-electron atomic systems are characterized by the presence of strong electron correlation, closeness to more than one threshold, and degeneracy with many continua; therefore, they offer unusual challenges to theoretical methodologies. In the present article, we computed with reasonable accuracy all the n=2 intrashell triply excited states (2s22p 2P; 2s2p2 2D, 4P, 2P, 2S; and 2p3 2D, 2P, 4S) of three-electron atomic systems (Z=2, 3, 4, 6, 8, 10) by using a density functional formalism developed recently in our laboratory, based on the nonvariational Harbola–Sahni exchange potential in conjunction with a parametrized local Wigner and Lee–Yang–Parr correlation potentials. Nonrelativistic energies and densities are obtained by solving a Kohn–Sham-type differential equation. The calculated results are compared with available experimental and other theoretical data. The 2p3(4S)→1s2p2(4P) transition wavelength for the isoelectronic series is also computed. The overall good agreement of our results with the literature data indicates the reliability of the present density functional methodology for excited states of many-electron systems. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 65 : 317–332, 1997 相似文献
3.
R. K. Nesbet 《International journal of quantum chemistry》2002,86(4):342-346
Orbital functional theory (OFT) is based on a rule that determines a single‐determinant reference state Φ for any exact N‐electron eigenstate Ψ. An OFT model postulates an explicit correlation energy functional Ec of occupied orbital functions {?i} and occupation numbers {ni}. The orbital Euler–Lagrange equations are analogous to Kohn–Sham equations, but do not in general contain local potential functions. Time‐dependent Hartree–Fock theory is generalized in OFT to a formally exact linear response theory that includes electronic correlation. In the exchange‐only limit, the theory reduces to the random‐phase approximation of many‐body theory. The formalism determines excitation energies. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001 相似文献
4.
Xiaoxu Jiang Xinlu Cheng Guanyu Chen Hong Zhang 《International journal of quantum chemistry》2012,112(14):2627-2631
Diffusion Monte Carlo (DMC) simulations were used to calculate the binding energies for hydrogen molecules adsorbed on the lithium metal–organic complex C4H3Li. The calculations use all‐electron DMC techniques where every electron is explicitly included in the simulation. Also we have systematically studied it using density functional theory (DFT) methods, revealing that each C4H3Li can hold up to four H2 molecules and the adsorption distance is about 2.2 Å. The DMC binding energies are in the range of 0.055–0.143 eV and are compared with those obtained with DFT using various exchange‐correlation functionals, with values ranging from 0.029 to 0.504 eV. These results indicate that caution is required applying DFT methods to weakly bound systems such as hydrogen storage materials based on lithium‐doped metal–organic frameworks. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
5.
6.
The wave function of a many electron system contains inhomogeneously distributed spatial details, which allows to reduce the number of fine detail wavelets in multiresolution analysis approximations. Finding a method for decimating the unnecessary basis functions plays an essential role in avoiding an exponential increase of computational demand in wavelet‐based calculations. We describe an effective prediction algorithm for the next resolution level wavelet coefficients, based on the approximate wave function expanded up to a given level. The prediction results in a reasonable approximation of the wave function and allows to sort out the unnecessary wavelets with a great reliability. © 2012 Wiley Periodicals, Inc. 相似文献
7.
8.
Liqun Zhang Zhengyu Zhou Dongmei Du Pei Yuan 《International journal of quantum chemistry》2006,106(9):2082-2089
To investigate the tautomerism of glycinamide that is induced by proton transfer, we present detailed theoretical studies on the reaction mechanism of both the isolated gas phase and H2O‐assisted proton transfer process of glycinamide, using density functional theory calculations by means of the B3LYP hybrid functional. Twenty‐six geometries, including 10 significant transition states, were optimized, and these geometrical parameters are discussed in detail. The relative order of the activation energy for hydrogen atom transfer of all the conformers has been systematically explored in this essay. For the amido hydrogen atom transfer process, the relative order of the activation energy is: IV < II < III < I, while in the carbonic hydrogen atom transfer process, the relative order is IV > II > III > I. Meanwhile, the most favorable structure for both the amido hydrogen atom transfer and the carbonic hydrogen atom transfer has been found. The involvement of the water molecule not only can stabilize the transition states and the ground states, but can also reduce the activation energy greatly. The superior catalytic effect of H2O has been discussed in detail. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 相似文献
9.
10.
Rafael D. Benguria Gonzalo A. Bley Michael Loss 《International journal of quantum chemistry》2012,112(6):1579-1584
Here we prove a new lower bound on the indirect Coulomb energy in quantum mechanics, in terms of the single particle density of the system. The new universal lower bound is an alternative to the classical Lieb–Oxford bound (with a smaller constant, C = 1.45 < CLO = 1.68) but involving an additive kinetic energy term of the single particle density as well. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012 相似文献
11.
The NO2 NO2^- electron transfer reaction was studied with DFT-B3LYP method at 6-311 G^* basis set level for the eight selected structures:four species favor the structure of “head to head”.The geometry of transition state was obtained by the linear corrdinate method.Three parameters,non-adiabatic activation energy(Ead),coupling matrix element(Hif) and reorganization energy(λ) for electron transfer reaction can be calculated.According to the reorganization energy of the ET reaction,the values obtained from George-Griffith-Marcus (GGM) method(the contribution only from diagonal elements of force constant matrix) are larger than those obtained from Hessian matrix method(including the contribution from both diagonal and off-diagonal elements), which suggests that the coupling interactions between different vibrational modes are important to the inner-sphere reorganization energy for the ET reactions in gaseous phase.The value of rate constant was obtained by using above three activation parameters. 相似文献
12.
13.
Heringer D Niehaus TA Wanko M Frauenheim T 《Journal of computational chemistry》2007,28(16):2589-2601
An analytical formulation for the geometrical derivatives of excitation energies within the time-dependent density-functional tight-binding (TD-DFTB) method is presented. The derivation is based on the auxiliary functional approach proposed in [Furche and Ahlrichs, J Chem Phys 2002, 117, 7433]. To validate the quality of the potential energy surfaces provided by the method, adiabatic excitation energies, excited state geometries, and harmonic vibrational frequencies were calculated for a test set of molecules in excited states of different symmetry and multiplicity. According to the results, the TD-DFTB scheme surpasses the performance of configuration interaction singles and the random phase approximation but has a lower quality than ab initio time-dependent density-functional theory. As a consequence of the special form of the approximations made in TD-DFTB, the scaling exponent of the method can be reduced to three, similar to the ground state. The low scaling prefactor and the satisfactory accuracy of the method makes TD-DFTB especially suitable for molecular dynamics simulations of dozens of atoms as well as for the computation of luminescence spectra of systems containing hundreds of atoms. 相似文献
14.
We outline here a self-consistent approach to the calculation of transition energies within density functional theory. The method is based on constricted variational theory (CV-DFT). It constitutes in the first place an improvement over a previous scheme [T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, F. Wang, Chem. Phys. 130 (2009) 154102] in that it includes terms in the variational parameters to any desired order n including n = ∞. For n = 2, CV(n)-DFT is similar to TD-DFT. Adiabatic TD-DFT becomes identical to CV(2)-DFT after the Tamm-Dancoff approximation is applied to both theories. We have termed the new scheme CV(n)-DFT. In the second place, the scheme can be implemented self-consistently, SCF-CV(n)-DFT. The procedure outlined here could also be used to formulate a SCF-CV(n) Hartree-Fock theory. The approach is further kindred to the ΔSCF-DFT procedures predating TD-DFT and we describe how adiabatic TD-DFT and ΔSCF-DFT are related through different approximations to SCF-CV(n)-DFT. 相似文献
15.
Excited‐State Proton Transfer and Intramolecular Charge Transfer in 1,3‐Diketone Molecules
下载免费PDF全文

Dr. Marika Savarese Dr. Éric Brémond Prof. Dr. Carlo Adamo Prof. Dr. Nadia Rega Dr. Ilaria Ciofini 《Chemphyschem》2016,17(10):1530-1538
The photophysical signature of the tautomeric species of the asymmetric (N,N‐dimethylanilino)‐1,3‐diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time‐dependent DFT (TD‐DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density‐based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited‐state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity. 相似文献
16.
Perissinotto S Garbugli M Fazzi D Bertarelli C Carvelli M Kandada AR Yue Z Wong KS Lanzani G 《Chemphyschem》2011,12(18):3619-3623
A novel system for the modulation of amplified emission based on a polyfluorene/diarylethene (namely F8BT/DTP) blend is shown. The high sensitivity of amplified spontaneous emission (ASE) is exploited to achieve efficient emission modulation with a low-intensity control signal. Modulation is then characterized by photoluminescence (PL) lifetime measurements, photocurrent experiments, and density functional theory calculations. This system can also act as a photocurrent switch based on the same principle. This technique may represent a useful tool for fluorescence quenching and sensing as well as find application in organic photonics. 相似文献
17.
The formation and migration of polarons have important influences on physical and chemical properties of transition metal oxides. Density functional theory plus the Hubbard begin{document}$U$end{document} correction (DFT+begin{document}$U$end{document} ) and constrained density functional theory (cDFT) are often used to obtain the transfer properties for small polarons. In this work we have implemented the cDFT plus the Hubbard begin{document}$U$end{document} correction method in the projector augmented wave (PAW) framework, and applied it to study polaron transfer in the bulk phases of TiObegin{document}$_2$end{document} . We have confirmed that the parameter begin{document}$U$end{document} can have significant impact on theoretical prediction of polaronic properties. It was found that using the Hubbard begin{document}$U$end{document} calculated by the cDFT method with the same orbital projection as used in DFT+begin{document}$U$end{document} , one can obtain theoretical prediction of polaronic properties of rutile and anatase phases of TiObegin{document}$_2$end{document} in good agreement with experiment. This work indicates that the cDFT+begin{document}$U$end{document} method with consistently evaluated begin{document}$U$end{document} is a promising first-principles approach to polaronic properties of transition metal oxides without empirical input. 相似文献
18.
Kovalevsky AY King G Bagley KA Coppens P 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(24):7254-7264
Photocrystallographic experiments show that laser exposure of crystals of [Ru(bpy)2(NO)(NO2)](PF6)2 at 90 K produces a double isonitrosyl-nitrito linkage isomer and provide the detailed geometry of the metastable species generated. The analysis indicates that the isomerization is accomplished through an intramolecular redox reaction involving oxygen transfer from the nitro to the nitrosyl group. At 200 K only a single (nitrito) linkage isomer is formed with a U-shaped conformation of the nitrito group rather than the Z conformation observed at 90 K. A mechanism for the isomerization is proposed based on the crystallographic results and FTIR data collected at low temperatures during the isomerization process. The study presents the first structural evidence for double linkage isomerization in transition-metal complexes. 相似文献
19.
LI Quan College of Chemistry Sichuan Normal University Chengdu China 《中国科学B辑(英文版)》2006,49(3):209-213
The study of the intermolecular interactions that drive the solvation of six-membered nitrogenated aromatic rings is of particular importance since they are known to constitute key building blocks of pro- teins and nucleotides[1―5]. The investigation of the 1:1 adduct of these molecules with water will be the first step in the understanding of such interactions. These molecules possess two different proton-acceptor sites: the ring π cloud and the lone pairs of electrons on the nitrogen atoms… 相似文献
20.
Bader H. Aldossari Asem Alenaizan Abdulaziz H. Al-Aswad Fahhad H. Alharbi 《International journal of quantum chemistry》2023,123(1):e27005
An approach guided by physical consistency in determining the general forms of D-dimensional kinetic energy density functionals (KEDF) has been demonstrated previously, producing an expansion which contains the majority of the known one-point KEDF forms. It has also been shown that any noninteracting KEDF must necessarily have a homogeneity degree of 2 in coordinate scaling, and that the ratio of the collective KED to electron density must approach the ionization energy as . This article demonstrates that the scaling condition is already satisfied in the general expansion despite not being conceived with the scaling as a constraint, and that the second condition places a restriction on the expansion terms of the KED. The discussion is extended as well for some known KEDs for comparison. 相似文献