首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of combining asymptotic expansions (with respect to a large Peclet number) is used to investigate the three-dimensional problem of steady-state convective diffusion to the surface of drops, around which flows a laminar stream of a viscous incompressible liquid whose velocity field is assumed to be known from the solution of the corresponding hydrodynamic problem. It is shown that for large Peclet numbers the heat and mass transfer between drops is completely determined by the mutual arrangement of special (starting or ending at the surface of a drop) lines of flow; under these circumstances, in the flow there are chains of drops which have no mutual diffusional effect on one another, and the total diffusional flow to a drop is determined by diffusion to particles located upstream in the same chain. For the case where the distance between the drops in the chain is much leas than P1/2 (P is the Peclet number), formulas for the distribution of the concentration and the total diffusional flow to the surface of each drop are obtained. It is shown that the total diffusional flow to the surface of a drop approaches zero in inverse proportion to its order number in a chain, which generalizes [1], in which the axisymmetric case is considered. A solution of the diffusional case is obtained for the case where there are critical lines at the surface of the drop. The problem is solved to the end if the singular flow lines are not closed and depart to infinity. With the presence of a region of closed circulation behind the drops, the problem is reduced to an integral equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika, Zhidkosti i Gaza, No. 2, pp. 44–56, March–April, 1978.The author thanks Yu. P. Gupalo and Yu. S. Ryazantsev for their interest in the work.  相似文献   

2.
Viscous flow in a circular cylindrical tube containing an infinite line of viscous liquid drops equally spaced along the tube axis is considered under the assumption that a surface tension, sufficiently large, holds the drops in a nearly spherical shape. Three cases are considered: (1) axial translation of the drops, (2) flow of the external fluid past a line of stationary drops, and (3) flow of external fluid and liquid drops under an imposed pressure gradient. Both fluids are taken to be Newtonian and incompressible, and the linearized equations of creeping flow are used.The results show that both drag and pressure drop per sphere increase as the spacing increases at fixed radius and also increase as the radius of the drop increases. The presence of the internal motion reduces the drag and pressure gradients in all cases compared to rigid spheres, particularly for drops approaching the size of the tube.  相似文献   

3.
This study experimentally examines the forced convective flow over two sequentially heated blocks mounted on one principal wall of a channel. The experiments, involving mass transfer, were carried out via the naphthalene sublimation technique (NST). By virtue of the analogy between heat and mass transfer, the results can then be converted to determine the heat transfer. In the experiments, the block spacings were set at 2, 4, 6, 8, 12, 16, and 22 and the Reynolds numbers were set at 1300 and 104 which correspond to the laminar and the turbulent convective flow cases, respectively. Results show that the Sherwood number increases or decreases monotonically along the block surfaces in the laminar convection cases; while the hump and sharp increase in the Sherwood number can be found in the turbulent convection cases. This is attributed to the reattachment of the separating bubble and the flow impingement, respectively. Comparison between the experimental and numerical results is made and the effect of the block spacing on heat transfer is discussed.  相似文献   

4.
The purpose of this study is to analyse the combined heat and mass transfer of liquid film condensation from a small steam–air mixtures flowing downward along a vertical tube. Both liquid and gas stream are approached by two coupled laminar boundary layer. An implicit finite difference method is employed to solve the coupled governing equations for liquid film and gas flow together with the interfacial matching conditions. The effects of a wide range of changes of three independent variables (inlet pressure, inlet Reynolds number and wall temperature) on the concentration at exit tube, local Nusselt and Sherwood numbers, film thickness, accumulated condensate rate and temperature are carefully examined. The numerical results indicate that in the case of condensing a small concentration of vapours from a mixture, the resistance to heat and mass transfer by non-condensable gas becomes very intense. The comparisons of average Nusselt number and local condensate heat transfer coefficient with the literature results are in good agreement.  相似文献   

5.
The unsteady extrusion of a viscoelastic film from an annular and axisymmetric die is examined. External, elastic, viscous and inertia forces deform the film, which is simultaneously cooled via forced convection to the ambient air. This moving boundary problem is solved by mapping the liquid/air interfaces onto fixed ones and by employing a regular perturbation expansion for all the dependent variables. The ratio of the film thickness to its inner radius at the exit of the die is used as the small parameter in the perturbation expansion. The fluid mechanical aspects of the process depend on the Stokes, Deborah, Reynolds, and Capillary numbers. The heat transfer in the film and to the environment gives rise to four additional dimensionless groups: the Peclet, Biot and Brinkman numbers and the activation energy, which determines the temperature dependence of fluid viscosity and elasticity. A variable heat transfer coefficient is also considered. For typical fluid properties and process conditions, the Peclet number is very large. In this case it is the ratio of the Biot to the Peclet number, the Stanton number, which arises in the energy conservation equation. It is shown that film cooling becomes important when the Stanton number and/or the activation energy are in the high-end of their typical values. In such cases, the cooling of the parison leads to a more uniform flow and shape for the film. The influence on the process of a variable heat transfer coefficient and the Brinkman number is small. Received: 7 April 1999/Accepted: 10 August 1999  相似文献   

6.
A study is made of steady convective mass transfer between a drop and a continuous medium in the case when the resistance to transfer is completely concentrated within the drop, in which an arbitrary bulk chemical reaction takes place. It is shown that the mean Sherwood number Sh on the surface of the drop is uniformly (with respect to the Péclet number Pe) bounded above, Sh ?k const (where the constant depends only on the drop geometry and not on the parameters Pe and K; k is the dimensionless rate of the bulk chemical reaction) and a diffusion boundary layer within the drop cannot be formed merely by increasing the intensity of the circulation of the fluid (i.e., by increasing the Péclet number, Pe →∞). This property of the mean Sherwood number is typical for internal problems and differs radically from the behavior of Sh for the corresponding external problem of mass transfer of a drop, for which, as a rule, the expression Sh = 0(√pe) holds in the limit Pe →∞(k = const). An equation is derived that describes the concentration distribution within the drop at large Peclet numbers for arbitrary rate of the bulk chemical reaction. The dynamics of the behavior of the basic characteristics of the mass transfer of the drop is studied qualitatively as a function of the parameters k and Pe.  相似文献   

7.
Simplified two-dimensional Navier-Stokes equations of the hyperbolic type are derived for viscous mixed (with transition through the sonic velocity) internal and external flows as a result of a special splitting of the pressure gradient in the predominant flow direction into hyperbolic and elliptic components. The application of these equations is illustrated with reference to the calculation of Laval nozzle flows and the problem of supersonic flow past blunt bodies. The hyperbolic approximation obtained adequately describes the interaction between the stream and surfaces for internal and external flows and can be used over a wide Mach number range at moderate and high Reynolds numbers. Examples of the calculation of viscous mixed flows in a Laval nozzle with large longitudinal throat curvature and in a shock layer in the neighborhood of a sphere and a large-aspect-ratio hemisphere-cylinder are given. The problem of determining the drag coefficient of cold and hot spheres is solved in a new formulation for supersonic air flow over a wide range of Reynolds numbers. In the case of low and moderate Reynolds numbers a drag reduction effect is detected when the surface of the sphere is cooled.  相似文献   

8.
The stochastic equations of continuum are used for determining the heat transfer coefficients. As a result, the formulas for Nusselt (Nu) number dependent on the turbulence intensity and scale instead of only on the Reynolds (Peclet) number are proposed for the classic flows of a nonisothermal fluid in a round smooth tube. It is shown that the new expressions for the classical heat transfer coefficient Nu, which depend only on the Reynolds number, should be obtained from these new general formulas if to use the well-known experimental data for the initial turbulence. It is found that the limitations of classical empirical and semiempirical formulas for heat transfer coefficients and their deviation from the experimental data depend on different parameters of initial fluctuations in the flow for different experiments in a wide range of Reynolds or Peclet numbers. Based on these new dependences, it is possible to explain that the differences between the experimental results for the fixed Reynolds or Peclet numbers are caused by the difference in values of flow fluctuations for each experiment instead of only due to the systematic error in the experiment processing. Accordingly, the obtained general dependences of Nu for a smooth round tube can serve as the basis for clarifying the experimental results and empirical formulas used for continuum flows in various power devices. Obtained results show that both for isothermal and for nonisothermal flows, the reason for the process of transition from a deterministic state into a turbulent one is determined by the physical law of equivalence of measures between them. Also the theory of stochastic equations and the law of equivalence of measures could determine mechanics which is basis in different phenomena of self-organization and chaos theory.  相似文献   

9.
The primary difficulty in solving the problem of mass transport through an isolated drop (or bubble) moving in a fluid medium at high Reynolds numbers lies in the extreme complexity of the hydrodynamic pattern of the phenomenon. For sufficiently high velocities a separation of the external flow will occur in the rear portion of the drops and bubbles, which leads to the appearance of a turbulent wake and a sharp increase of the hydrodynamic resistance. Beginning with those dimensions for which the resistance force acting per unit surface of the drop or bubble from the external medium becomes greater than the capillary pressure, the surface of the drops and bubbles begins to deform and pulsate. The local variations of the surface tension, resulting either from the process of convective diffusion or from adsorption of surface-active substances, have a large effect on the hydrodynamics of drops and bubbles (particularly on the deformation of their surface) [1, 2], The presence of vortical, and possibly even turbulent, motion within the drops and bubbles may, under certain conditions [1], lead to their fractionation.Naturally, at the present time such complex hydrodynamics cannot be described by exact quantitative relations. Several authors have attempted to solve this problem approximately within the framework of certain assumptions. In particular [3–6], a theory was developed for the boundary layer on the surface of spherical and ellipsoidal gaseous bubbles moving in a liquid, studies were made [7, 8] of the hydrodynamics of drops located in a gas flow and the conditions were found for which fractionation of such drops takes place. Of considerable practical interest is the development of the theory of mass transfer in pulsating drops and bubbles and finding in explicit form the dependence of the mass transfer coefficients on the hydrodynamic characteristics of these systems. Until this relationship is established, every theory which ignores the effect of hydrodynamics on the mass transfer rate from an individual drop or bubble cannot be considered in any way well-founded. This relates particularly to the theories [9, 10] which consider mass transfer in systems with concentrated streams of drops and bubbles. The present paper is devoted to the study of mass transport through the surface of an isolated drop in an irrotational gas or liquid stream for large Peclet numbers P.In conclusion the authors wish to thank V. G. Levich for his helpful discussions.  相似文献   

10.
DRAG FORCE IN DENSE GAS—PARTICLE TWO—PHASE FLOW   总被引:1,自引:0,他引:1  
Numerical simulations of flow over a stationary particle in a dense gas-particle two-phase flow have been carried out for small Reynolds numbers (less than 100). In order to study the influence of the particles interaction on the drag force, three particle arrangements have been tested: a single particle, two particles placed in the flow direction and many particles located regularly in the flow field. The Navier-Stokes equations are discretized in the three-dimensional space using finite volume method. For the first and second cases, the numerical results agree reasonably well with the data in literature. For the third case, i.e., the multiparticle case, the influence of the particle volume fraction and Reynolds numbers on the drag force has been investigated. The results show that the computational values of the drag ratio agree approximately with the published results at higher Reynolds numbers (from 34.2 to 68.4), but there is a large difference between them at small Reynolds numbers. The project supported by the Special Funds for Major State Basis Research Projects in China (G19990222).  相似文献   

11.
In this work, the drag coefficient and the void fraction around a tube subjected to two-phase cross flow were studied for a single tube and for a tube placed in an array. The drag coefficients were determined by measuring the pressure distribution around the perimeter of the tube. Single tube drag data were taken when the tube was held both rigidly and flexibly. The test tube was made of acrylic and was 2.2 cm in diameter and 20 cm in length. In the experiments, liquid Reynolds number ranged from 430 to 21,900 for the single tube and liquid gap Reynolds number ranged from 32,900 and 61,600 for the tube placed in a triangular array. Free stream void fraction was varied from 0 to 0.4. At low Reynolds numbers, the ratio of two-phase to single-phase drag coefficient is found to be a strong function of εGr/Re2. However, at high Reynolds numbers only void fraction is the important parameter. Empirical correlations have been developed for the ratio of two-phase drag on a single tube and on a tube placed in an array.  相似文献   

12.
A new method of measuring local mass transfer for highly complex geometries is demonstrated. The method combines gypsum dissolution and X-ray computed tomography (CT). An object coated in gypsum is CT scanned before and after exposure to fluid flow. Digital three-dimensional pre- and post-flow geometries are created using the CT data, and the local dissolution thickness is determined by subtracting the post-flow from the pre-flow object. The method is first demonstrated for cylinders in cross-flow and validated with mass and heat transfer data. The measurements agree with values from correlations reported in the literature when scaled using Reynolds, Sherwood, and Schmidt numbers. The method is then applied to measure local mass transfer for the complex geometry of a 0.75-scale branching scleractinian coral Stylophera pistillata. Local Sherwood numbers vary between nearly zero on the backward facing surfaces of the downstream branches of the coral and nearly 200 at the tips of the branches at the top of the coral. The upstream facing surfaces at radii between 20 and 70 % of the overall radius of the coral experience Sherwood numbers close to 100. The local measurements are integrated to produce a bulk mass transfer coefficient that lies within the range of previous bulk measurements in the literature for similar coral species. With this method, local mass transfer rates can be measured for complex objects in laboratory or natural in situ flow environments. These are geometries for which only bulk measurements were previously possible.  相似文献   

13.
Heat transfer in a film flow of the FC-72 dielectric liquid down a vertical surface with an embedded 150×150 mm heater is experimentally examined in the range of Reynolds numbers Re = 5–375. A chart of liquid-film flow modes is constructed, and characteristic heat-transfer regions are identified. Data on the dependence of heater-wall temperature and local heat flux at the axis of symmetry of the heater on the longitudinal coordinate are obtained. Local and mean heat-transfer coefficients are calculated. It is shown that enhanced heat transfer is observed in the region where rivulets starts forming in the low-Reynolds-number liquid-film flow.  相似文献   

14.
Experiments were performed to study pressure drops in copper foams embedded in a rectangular copper channel. De-ionized water was used as the working fluid with mass fluxes of 30–200 kg/m2 s, and inlet temperature of 40–80°C. The copper foam has the porosity of 0.88 and the pore densities of 30, 60 and 90 ppi (pores per inch). Both single-phase liquid flow and boiling two-phase flow are studied. Effects of mass fluxes, vapor mass qualities, and average pore diameters of metallic foams are investigated. It is found that friction factors for the single-phase liquid flow are mainly dependent on the Reynolds number and the average pore diameter of metallic foams. The friction factors are decreased with increases in the Reynolds numbers, and will approach 0.22 at high Reynolds numbers. For the boiling two-phase flow, two-phase pressure drops are increased with increases in the outlet vapor mass qualities, mass fluxes, and ppi values. The two-phase multiplier is increased with increases in the outlet vapor mass qualities and mass fluxes, and it is decreased with increases in the Martinelli parameter and will attain a constant value depending on the mass fluxes. The larger the mass fluxes, the larger the constant value is. An experimental correlation considering the effects of vapor mass qualities, mass fluxes, and average pore diameters of metallic foams is recommended, showing good accuracy to predict the two-phase pressure drops in metallic foams.  相似文献   

15.
16.
The axially-symmetric laminar flow of an incompressible viscous fluid resulting from uniform injection through two parallel porous plates is analyzed. An exact numerical solution as well as asymptotic solutions for high and low Reynolds numbers are obtained. It is found that the velocity component normal to the porous plates is everywhere independent of radial position. This property of uniform accessibility may make this flow geometry a useful experimental tool analogous to the rotating disc. The analysis of high Peclet number mass transfer across the center plane of this geometry is presented as an example.  相似文献   

17.
The baseline and forced flow around a bluff body with semi-elliptical D-shape was investigated by solving the 2D Navier–Stokes equations at low Reynolds numbers. A D-shape rather than the canonic circular-cylinder was selected due to the fixed separation points in the latter, enabling to study a pure wake rather than boundary-layer control. The correlation between Strouhal and Reynolds numbers, the mean drag, the lift and drag oscillations vs. the Reynolds number and wake structure were investigated and compared to experimental and numerical data. Effects of open-loop forcing, resulting from the influence of zero-mass-flux actuators located at the fixed separation points, were studied at a Reynolds number of 150. Fluidic rather than body motion or volume forcing was selected due to applicability considerations. The motivation for the study was to quantify the changes in the flow field features, as captured by Proper Orthogonal Decomposition (POD) analysis, due to open-loop forcing, inside and outside the “lock-in” regime. This is done in order to evaluate the suitability of low-order-models based on POD modes of this changing flow field, for future feed-back flow control studies. The evolution of the natural and the excited vortices in the Kármán wake were also investigated. The formation and convection regions of the vortex evolution were documented. It was found that the forcing causes an earlier detachment of the vortices from the boundary-layers, but does not affect their circulation or convection speeds. The results of the POD analysis of the near-wake flow show that the influence of the bluff body shape (“D”-shaped versus circular cylinder) on the baseline POD wake modes is small. It was found that the eigenfunctions (mode-shapes) of the POD velocity modes are less sensitive to slot excitation than the vorticity modes. As a result of the open-loop excitation, two types of mode-shape-change were observed: a mode can be exchanged with a lower-energy mode or shifted to a low energy level. In the latter case, the most energetic mode becomes the “actuator” mode. The evolution of one-slot excitation on still fluid (“Synthetic jet”) was studied and compared to published data and to “actuator” modes with external flow present. Based on the current findings, it is hypothesized that the cross-flow velocity POD modes are suitable for feedback control of wake flow using periodic excitation, due to their low sensitivity to the excitation as compared to the streamwise velocity or vorticity modes.  相似文献   

18.
This investigation explores the mass/heat transfer from a wall-mounted block in a rectangular fully developed channel flow. The naphthalene sublimation scheme was used to measure the level of local mass transfer from the block’s surfaces. The heat transfer coefficient can be obtained by analogy between heat and mass transfer. The effects of the Reynolds number on the local mass transfer from the block’s surfaces have been widely discussed. Results showed that, owing to the flow complexity induced by vortices around the block, the block’s surfaces appeared four different spatial Sherwood number distributions, termed “Wave type”, “U type”, “Slant type”, and “Pit type”. A change in the Reynolds number significantly altered the spatial Sherwood number distributions on the block’s surfaces. Besides, four correlations between the Reynolds number and the surface-averaged Sherwood number were presented for the front, top, side, and rear surfaces of the block at a given block’s height, for the purpose of practical applications.  相似文献   

19.
This paper presents the results of a numerical study on the flow characteristics and heat transfer over two equal square cylinders in a tandem arrangement. Spacing between the cylinders is five widths of the cylinder and the Reynolds number ranges from 1 to 200, Pr=0.71. Both steady and unsteady incompressible laminar flow in the 2D regime are performed with a finite volume code based on the SIMPLEC algorithm and non‐staggered grid. A study of the effects of spatial resolution and blockage on the results is provided. In this study, the instantaneous and mean streamlines, vorticity and isotherm patterns for different Reynolds numbers are presented and discussed. In addition, the global quantities such as pressure and viscous drag coefficients, RMS lift and drag coefficients, recirculation length, Strouhal number and Nusselt number are determined and discussed for various Reynolds numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with the direct numerical simulation(DNS) methods for different Reynolds numbers. A formulation is derived to express the relation between the drag and the Reynolds shear stress. With the application of optimal electromagnetic force, the in-depth relations among characteristic structures in the flow field, mean Reynolds shear stress, and the effect of drag reduction for different Reynolds numbers are discussed. The results indicate that the maximum drag reductions can be obtained with an optimal combination of parameters for each case of different Reynolds numbers. The regular quasi-streamwise vortex structures, which appear in the flow field, have the same period with that of the electromagnetic force.These structures suppress the random velocity fluctuations, which leads to the absolute value of mean Reynolds shear stress decreasing and the distribution of that moving away from the wall. Moreover, the wave number of optimal electromagnetic force increases,and the scale of the regular quasi-streamwise vortex structures decreases as the Reynolds number increases. Therefore, the rate of drag reduction decreases with the increase in the Reynolds number since the scale of the regular quasi-streamwise vortex structures decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号