首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of carbon-based nanohoops with other functional organic molecular structures should lead to the design of new molecular configurations with interesting properties. Here, necklace-like nanohoops embedded with carborane were synthesized for the first time. The unique deboronization of o-carborane has led to the facile preparation of ionic nanohoop compounds. Nanohoops functionalized by nido-o-carborane show excellent fluorescence emission, with a solution quantum yield of up to 90.0 % in THF and a solid-state quantum efficiency of 87.3 %, which opens an avenue for the applications of the nanohoops in OLEDs and bioimaging.  相似文献   

2.
《中国化学快报》2022,33(7):3349-3360
The prevalence of positron emission tomography (PET) imaging has advanced biomedical applications for its ultrahigh sensitivity, deep tissue penetration and quantitative visualization of diseases in vivo. 64Cu with ideal half-life and decay characteristics has been designed as radioactive probes for disease diagnosis. The currently reported 64Cu-labeled nanomaterials have the advantages of long circulation time in serum, good biocompatibility and mature preparation methods, and have been used in vivo PET imaging, biodistribution and pharmacokinetic monitoring, and imaging guided therapy. At the same time, suitable carrier characteristics and radiolabeling strategies are particularly important in the 64Cu PET imaging process. In this review, we summarize different imaging probe designs and 64Cu radiolabeling strategies, as well as their eventual applications in biomedicine. The potential challenges and prospects of 64Cu labeled nanomaterials are also described, which provides broad prospects for radiolabeling strategies and further applications.  相似文献   

3.
Biomaterials for in vivo fluorescence imaging are required to be biocompatible, nontoxic, photostable and highly fluorescent. Fluorescence must be in the near infrared (NIR) region of the electromagnetic spectrum to avoid absorption and autofluorescence of endogenous tissues. NIR fluorescent polystyrene nanoparticles may be considered ideal biomaterials for in vivo imaging applications. These NIR nanoparticles were prepared by a swelling process of polystyrene template nanoparticles with a hydrophobic NIR dye dissolved in a water‐miscible swelling solvent, a method developed for preparation of nonbiodegradable nanoparticles, for NIR fluorescent bioimaging applications. This method overcomes common problems that occur with dye entrapment during nanoparticle formation such as loss of fluorescence and size polydispersity. Fluorescence intensity of the nanoparticles was found to be size dependent, and was optimized for differently sized nanoparticles. The resulting NIR nanoparticles were also found to be more fluorescent and highly photostable compared to the free dye in solution, showing their potential as biomaterials for in vivo fluorescence imaging.  相似文献   

4.
Peptide-based probes play prominent roles in biomedical research due to their promising properties such as high biocompatibility, fast excretion, favorable pharmacokinetics as well as easy and robust preparation. Considering the translation of imaging probes into clinical applications, peptide-based probes remain to be the most desirable and optimal candidates.  相似文献   

5.
The applications of coordination chemistry to molecular imaging has become a matter of intense research over the past 10 years. In particular, the applications of bis(thiosemicarbazonato) metal complexes in molecular imaging have mainly been focused on compounds with aliphatic backbones due to the in vivo imaging success of hypoxic tumors with PET (positron emission tomography) using 64CuATSM [copper (diacetyl‐bis(N4‐methylthiosemicarbazone))]. This compound entered clinical trials in the US and the UK during the first decade of the 21st century for imaging hypoxia in head and neck tumors. The replacement of the ligand backbone to aromatic groups, coupled with the exocyclic N's functionalization during the synthesis of bis(thiosemicarbazones) opens the possibility to use the corresponding metal complexes as multimodal imaging agents of use, both in vitro for optical detection, and in vivo when radiolabeled with several different metallic species. The greater kinetic stability of acenaphthenequinone bis(thiosemicarbazonato) metal complexes, with respect to that of the corresponding aliphatic ATSM complexes, allows the stabilization of a number of imaging probes, with special interest in “cold” and “hot” Cu(II) and Ga(III) derivatives for PET applications and 111In(III) derivatives for SPECT (single‐photon emission computed tomography) applications, whilst Zn(II) derivatives display optical imaging properties in cells, with enhanced fluorescence emission and lifetime with respect to the free ligands. Preliminary studies have shown that gallium‐based acenaphthenequinone bis(thiosemicarbazonato) complexes are also hypoxia selective in vitro, thus increasing the interest in them as new generation imaging agents for in vitro and in vivo applications.  相似文献   

6.
Bioimaging is increasingly becoming an indispensable tool in disease diagnosis, clinical trials and medical practice. Fluorescence bioimaging is minimally invasive, affordable and portable, with the potential to become a widespread medical imaging technique. Currently, a serious challenge obstructing the large-scale clinical applications of fluorescence technique is the shallow penetration depth. Three-photon fluorescence offers several advantages over near-infrared and two-photon fluorescence, such as deeper penetration, more confined excitation areas and higher resolution. On the other hand, fluorophores displaying solid-state fluorescence are intriguing because they can emit bright fluorescence in the condensed phase, which is beneficial to imaging applications demanding intense emission signals. This review highlights the recent advances in small organic AIEgens for three-photon fluorescence bioimaging in vivo. The progress suggests that three-photon fluorescence imaging offers deep penetration, good photostablity and high signal-to-background contrast, which is valuable in fluorescence imaging in vivo.  相似文献   

7.
A perspective on bioconjugated nanoparticles and quantum dots   总被引:1,自引:0,他引:1  
Bioconjugated nanoparticles and quantum dots are among the most exciting nanomaterials with promising application potentials in nanomedicine field. These applications include biosensing, bioimaging, bioassay, targeted drug delivery and new therapeutic agents or method development. Although most of these applications are based on the optical properties of nanoparticle materials such as surface plasmon resonance, surface enhanced Raman scattering and strong photoluminescence, other aspects of nanoparticles such as the catalytic effect and amplification effect associated with the nanoscale dimension have also been explored. This review presents a narrative summary on the use of bioconjugated nanoparticles and quantum dots for biological applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.  相似文献   

8.
Lu Chen  Heyou Han 《Mikrochimica acta》2014,181(13-14):1485-1495
Near-infrared quantum dots (NIR QDs) represent a powerful material and diagnostic tool owing to their long emission wavelength which extends into the near-infrared region where permeation depths are much larger and where the intrinsic absorbance and autofluorescence of tissue is much smaller compared to shortwave emitting QDs. We are reviewing here recent (2008–2013) methods for the preparation of NIR QDs, their (bio)chemical modifications, and their applications. The article is subdivided into the following sections: (a) Synthesis of NIR QDs; (b) modification of NIR QDs and probe preparation; (c) applications of NIR QDs (with subsections on fluorescence quenching and fluorescence enhancement-based bioanalytical detection, on fluorescence bioimaging, on uses in photovoltaic cells and solar cells, and on molecular detection based on electrogenerated chemiluminescence). We finally make conclusions and discuss current challenges, trends, and future applications. The review contains 119 references. Figure
This review systematically presents the development, preparation methods, modifications and bioapplications of Near-infrared quantum dots (NIR QDs). The review contains 126 references.  相似文献   

9.
《中国化学快报》2023,34(6):107915
The biocompatibility and biodegradability of peptide self-assembled materials makes them suitable for many biological applications, such as targeted drug delivery, bioimaging, and tracking of therapeutic agents. According to our previous research, self-assembled fluorescent peptide nanoparticles can overcome the intrinsic optical properties of peptides. However, monochromatic fluorescent nanomaterials have many limitations as luminescent agents in biomedical applications. Therefore, combining different fluorescent species into one nanostructure to prepare fluorescent nanoparticles with multiple emission wavelengths has become a very attractive research area in the bioimaging field. In this study, the tetrapeptide Trp-Trp-Trp-Trp (WWWW) was self-assembled into multicolor fluorescent nanoparticles (TPNPs). The results have demonstrated that TPNPs have the blue, green, red and near infrared (NIR) fluorescence emission wavelength. Moreover, TPNPs have shown excellent performance in multicolor bioimaging, biocompatibility, and photostability. The facile preparation and multicolor fluorescence features make TPNPs potentially useful in multiplex bioanalysis and diagnostics.  相似文献   

10.
Biocompatible fluorescent polymeric nanoparticles (FPNs) are promising luminescent probes in cellular bioimaging, while the fabrication of high‐quantum‐yield FPN using nonconjugated heterochain polymers derived from step‐growth polymerization is still in its infancy. Herein, the nonconjugated polyarylene ether nitrile (PEN) is endowed with aggregation‐induced emission (AIE) feature by incorporation of an AIEgen named of 1,2‐di(4‐hydroxyphenyl)‐1,2‐diphenylethene into macromolecular backbone. Furthermore, the AIE‐active PEN is crosslinked into water soluble fluorescent nanospheres showing good biocompatibility and strong emission ≈480 nm with a quantum yield of 21% in the presence of Ca2+, which allows the successful bioimaging of cancer cells. Due to the facile fabrication of FPNs and their effective bioimaging performance, the current work will open the way for the biomedical applications of various high performance polyarylene ethers.  相似文献   

11.
Fluorescent probes play a key role in modern biomedical research. As compared to inorganic quantum dots (QDs) composed with heavy metal elements, organic dye-based fluorescent nanoparticles have higher biocompatibility and are richer in variety. However, traditional organic fluorophores tend to quench fluorescence upon aggregation, which is known as aggregation-caused quenching (ACQ) effect that hinders the fabrication of highly emissive fluorescent nanoparticles. In this work, we demonstrate the synthesis of organic fluorescent dots with aggregation-induced emission (AIE) in far-red/near-infrared (FA/NIR) region. A conventional ACQ-characteristic fluorescent dye, 3,4:9,10-tetracarboxylic perylene bisimide (PBI), is converted into an AIE fluorogen through attaching two tetraphenylethylene (TPE) moieties. The fluorescent dots with surface folic acid groups are fabricated from PBI derivative (DTPEPBI), showing specific targeting effect to folate receptor-overexpressed cancer cells. In vivo studies also suggest that the folic acid-functionalized AIE dots preferentially accumulate in the tumor site through enhanced permeability and retention (EPR) effect and folate receptor-mediated active targeting effect. The low cyto-toxicity, good FR/NIR contrast and excellent targeting ability in in vitro/in vivo imaging indicate that the AIE dots have great potentials in advanced bioimaging applications.  相似文献   

12.
In the past decade, mesoporous silica nanoparticles (MSNs) as nanocarriers have showed much potential in advanced nanomaterials due to their large surface area and pore volume. Especially, more and more MSNs based nanodevices have been designed as efficient drug delivery systems (DDSs) or biosensors. In this paper, lipid, protein and poly(NIPAM) coated MSNs are reviewed from the preparation, properties and their potential application. We also introduce the preparative methods including physical adsorption, covalent binding and self-assembly on the MSNs' surfaces. Furthermore, the interaction between the aimed cells and these molecular modified MSNs is discussed. We also demonstrate their typical applications, such as photodynamic therapy, bioimaging, controlled release and selective recognition in biomedical field.  相似文献   

13.
Zinc is a biocompatible element that exists as the second most abundant transition metal ion and an indispensable trace element in the human body. Compared to traditional metal‐organic complexes systems, d10 metal ZnII complexes not only exhibit a large Stokes shift and good photon stability but also possess strong emission and low cytotoxicity with a relatively small molecular weight. The use of ZnII complexes has emerged in the last decade as a versatile and convenient tool for numerous biological applications, including bioimaging, molecular and protein recognition, as well as photodynamic therapy. Herein, we review recent developments involving ZnII metal complexes applied as specific subcellular compartment imaging probes and their correlated utilizations.  相似文献   

14.
Herein, we report the versatile synthetic strategy and opto-electronic properties for the phosphorylation of BODIPY derivatives 5aa - 5ak by substituting with an electron-donating/withdrawing group at the ortho position. Nevertheless, this new methodology relatively promotes the tolerance of the aldehyde moiety and the high yield for the synthesis of BODIPY o-OPhos derivatives. The photophysical studies suggest improved optical properties due to the inductive effect of various electron-donating/withdrawing groups. The UV-visible and the emission data suggest that BODIPY o-OPhos derivatives emphasize the property of the excited states with an increase in fluorescence intensity and high quantum yields due to the presence of bulky phospsho-triester at the meso- position which hinders the free rotation around the C-Ar bond and facilitates the development of OLEDs and various organophosphorus warfare agents. Electrochemical studies reveal 5ak depicts the ease of redox activity amongst the 5aa - 5ak derivatives. The density functional theory indicates the highest occupied molecular orbital on the BODIPY moiety whereas the lowest unoccupied molecular orbital delocalized on BODIPY and the phospho-triester moieties. Thus, the unique development of the novel BODIPY derivatives with improved optical and redox properties pave the way for fluorescent probes and bioimaging techniques.  相似文献   

15.
Gold nanomaterials (Au NMs) have attracted increasing attention in biomedicine due to their facile preparation, multifunctional modifications, unique optical and electrical properties, and good biocompatibility. The physicochemical properties of Au NMs at nanoscale, like size, shape, surface chemistry, and near field effects, are rendering Au NMs potent candidates in biomedicine. Thus, risk assessment of negative effects of Au NMs on biological systems is becoming urgent and necessary for future applications. In this review, we summarize up-to-date progresses on the preparation and modification of Au NMs and their biomedical applications, including biosensor, bioimaging and phototherapy, gene/drug delivery. Finally, we discuss the potential risk of Au NMs to biological systems, which is instructive for rationally designing and preparing nanomaterials for safe applications in nanomedicine.  相似文献   

16.
Manganese-based nanostructured contrast agents (CAs) entered the field of medical diagnosis through magnetic resonance imaging (MRI) some years ago. Although some of these Mn-based CAs behave as classic T1 contrast enhancers in the same way as clinical Gd-based molecules do, a new type of Mn nanomaterials have been developed to improve MRI sensitivity and potentially gather new functional information from tissues by using traditional T1 contrast enhanced MRI. These nanomaterials have been designed to respond to biological environments, mainly to pH and redox potential variations. In many cases, the differences in signal generation in these responsive Mn-based nanostructures come from intrinsic changes in the magnetic properties of Mn cations depending on their oxidation state. In other cases, no changes in the nature of Mn take place, but rather the nanomaterial as a whole responds to the change in the environment through different mechanisms, including changes in integrity and hydration state. This review focusses on the chemistry and MR performance of these responsive Mn-based nanomaterials.  相似文献   

17.
近年来纳米材料被广泛应用于生物医学、航空航天和精细化工等领域。构成纳米材料的纳米粒子具有小尺寸效应、表面效应和宏观量子隧道效应等性质。其中金纳米粒子由于其独特的荧光特性、良好的生物相容性和表面等离子共振等性质,被广大科研人员进行深入研究。例如,在生物医学领域,科研人员构建了一系列新型的金纳米比色传感器、光学探针及各类载药体系等。然而,目前金纳米粒子仍存在水分散性差、肾清除效率低和量子发射产率低等问题,限制了其广泛应用。因此,研究人员对金纳米粒子表面进行多样化修饰,从而能有效克服上述缺点。本文就目前主流配体表面修饰金纳米粒子的研究进展进行了详细总结,着重介绍了功能化金纳米粒子在生物成像、生物检测、生物治疗三方面的应用,最后对金纳米粒子的临床治疗机制的探索以及商业化的应用进行了展望,希望能为相关领域的研究者们提供新思路。  相似文献   

18.
The modular assembly of boronic acids with Schiff‐base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99 %) of structurally diverse and photostable dyes that exhibit a polarity‐sensitive green‐to‐yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54 000 m ?1 cm?1). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non‐cytotoxic, stable, and highly fluorescent poly(lactide‐co‐glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains.  相似文献   

19.
Gd3+ complexes are widely used as contrast enhancing agents in medical magnetic resonance imaging (MRI). In recent years, new fields have emerged in their development. The general tendency of using higher magnetic fields in biomedical and clinical MRI for a better signal to noise ratio calls for new contrast agents specifically optimized for such high field applications. Molecular imaging, aiming at the non-invasive visualisation of expression and function of bioactive molecules, requires imaging probes that provide a specific magnetic response to a particular molecular event. Finally, bimodal imaging may allow for combining the excellent resolution of MRI with a good sensitivity of other imaging modalities, such as optical methods. It requires bimodal imaging probes that satisfy requirements for both modalities within a single molecule. Here we review our latest efforts to develop novel lanthanide-based contrast agents in these specific fields and demonstrate the possibilities offered by lanthanide coordination chemistry.  相似文献   

20.
In molecular imaging, multimodal imaging agents can provide complementary information, for improving the accuracy of disease diagnosis or enhancing patient management. In particular, optical/nuclear imaging may find important preclinical and clinical applications. To simplify the preparation of dual‐labeled imaging agents, we prepared versatile monomolecular multimodal imaging probe (MOMIP) platforms containing both a fluorescent dye (BODIPY) and a metal chelator (polyazamacrocycle). One of the MOMIP was conjugated to a cyclopeptide (i.e., octreotide) and radiolabeled with 111In. In vitro and in vivo studies of the resulting bioconjugate were conducted, highlighting the potential of these BODIPY‐based bimodal probes. This work also confirmed that the biovector and/or the bimodal probes must be chosen carefully, due to the impact of the MOMIP on the overall properties of the resulting imaging agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号