首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This study develops an extended unresolved CFD-DEM coupling method for simulation of the fluid–solid flow with non-spherical particles. The limitation of fluid grid size is discussed, by simulating the settling of a cylinder in a Newtonian fluid based on the resolved and unresolved CFD-DEM coupling method. Then, the calculation of porosity and the fluid–particle relative velocity based on the particle shape enlargement method for simulation of non-spherical particles is proposed. The availability of the particle shape enlargement method for the simulation of non-spherical particles with different sphericity is discussed in this work, by comparing it with the results from the equivalent diameter enlargement method. The limitation of the equivalent diameter enlargement method for non-spherical particles is revealed from the simulation results. Several typical cases are employed to elaborate and verify the extended unresolved CFD-DEM method based on particle shape enlargement method, by presenting a good consistency with the experimental results. It proves that the extended unresolved CFD-DEM method is suitable for different CFD grid size ratios, and consolidates that it is a universal calculation method for CFD-DEM coupling simulation.  相似文献   

2.
CFD-DEM已经广泛应用到喷动床的研究中,其模拟的准确性与用于处理颗粒-流体相互作用的曳力模型密切相关。为了探究不同曳力模型对喷动床CFD-DEM模拟结果的影响,基于非结构化网格的喷动床仿真,使用7个曳力模型分别对锥底喷动床内气固两相运动进行了数值模拟。综合床层压降、喷动高度和颗粒速度特性三个方面,Wen-Yu模型和Gibilaro模型预测的气固两相运动最剧烈,其次是Di Felice模型、Syamlal-O’Brien模型、Gidaspow模型和Huilin-Gidaspow模型,BVK模型预测的气固两相运动最平缓。由于模拟的气固两相体系属于密相体系,Huilin-Gidaspow模型的光滑过渡函数没有产生效果,所以Gidaspow模型和Huilin-Gidaspow模型在各个方面的预测结果基本一致。  相似文献   

3.
Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) is a commonly used numerical method to model gas-solid flow in fluidised beds and other multiphase systems. A significant limitation of CFD-DEM is the feasibility of the realistic simulation of large numbers of particles. Coarse-graining (CG) approaches, through which groups of multiple individual particles are represented by single, larger particles, can substantially reduce the total number of particles while maintaining similar system dynamics. As these three CG models have not previously been compared, there remains some debate, however, about the best practice in the application of CG in CFD-DEM simulations. In this paper, we evaluate the performance of three typical CG methods based on simulations of a bubbling fluidised bed. This is achieved through the use of a numerical validation framework, which makes full use of the high-resolution 3D positron emission particle tracking (PEPT) measurements to rigorously validate the outputs of CFD-DEM simulations conducted using various different coarse-graining models, and various different degrees of coarse-graining. The particle flow behaviours in terms of the particle occupancy field, velocity field, circulation time, and bubble size and velocity, are comprehensively analysed. It is shown that the CG simulation starts to fail when the size ratio between the bed chamber and the particles decreases to approximately 20. It is also observed, somewhat surprisingly, that the specific CG approach applied to interparticle contact parameters does not have a substantial effect on the simulation results for the bubbling bed simulations across a wide range of CG factors.  相似文献   

4.
Local scour has been identified as the main factor that causes failures of structures in offshore engineering. Numerous research efforts have been devoted to local scour around offshore pipelines in the past. In this paper, a finite element numerical model is established for simulating local scour below offshore pipelines in steady currents. The flow is simulated by solving the unsteady Reynolds-averaged Navier–Stokes equations with a standard k ? ? turbulent model closure. A sand slide scheme is proposed for the scour calculation, and bed load is considered in the proposed scour model. To account for changes in bed level, the moving mesh method is adopted to capture the water–sediment interface (bed), and the change of bed level is calculated by solving Exner–Polya equation. All the equations are discretised within the two-step Taylor–Galerkin algorithm in this paper. It is found that the sand slide model works well for the simulation of the scour, and the numerical results are shown to be in good agreement with the available experimental data.  相似文献   

5.
《中国颗粒学报》2005,3(1-2):58-59
The multi-scale structures of complex flows in chemical engineering have been great challenges to the design and scaling of such systems, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constituents and powerful tools of multi-scale models, owing to their physical fidelity and computational simplicity. Especially, pseudo-particle modeling (PPM, Ge & Li, 1996; Ge & Li, 2003) is most suitable for molecular scale flow prediction and exploration of the origin of multi-scale structures; macro-scale PPM (MaPPM, Ge & Li, 2001) and similar models are advantageous for meso-scale simulations of flows with complex and dynamic discontinuity, while the lattice Boltzmann model is more competent for homogeneous media in complex geometries; and meso-scale methods such as dissipative particle dynamics are unique tools for complex fluids of uncertain properties or flows with strong thermal fluctuations. All these methods are favorable for seamless interconnection of models for different scales.However, as PMs are not originally designed as either tools for complexity or constituents of multi-scale models, further improvements are expected. PPM is proposed for microscopic simulation of particle-fluid systems as a combination of molecular dynamics (MD) and direct simulation Monte-Carlo (DSMC). The collision dynamics in PPM is identical to that of hard-sphere MD, so that mass, momentum and energy are conserved to machine accuracy. However, the collision detection procedure, which is most time-consuming and difficult to be parallelized for hard-sphere MD, has been greatly simplified to a procedure identical to that of soft-sphere MD. Actually, the physical model behind such a treatment is essentially different from MD and is more similar to DSMC, but an intrinsic difference is that in DSMC the collisions follow designed statistical rules that are reflection of the real physical processes only in very limited cases such as dilute gas.PPM is ideal for exploring the mechanism of complex flows ab initio. In final analysis, the complexity of flow behavior is shaped by two components on the micro-scale: the relative displacements and interactions of the numerous molecules. Adding to the generality of the characteristics of complex system as described by Li and Kwauk (2003), we notice that complex structures or behaviors are most probably observed when these two components are competitive and hence they must compromise, as in the case of emulsions and the so-called soft-matter that includes most bio-systems. When either displacement or interaction is dominant, as in the case of dilute gas or solid crystals, respectively, complexity is much less spectacular. Most PMs consist explicitly of these two components, which is operator splitting in a numerical sense, but it is physically more meaningful and concise in PPM.The properties of the pseudo-particle fluid are in good conformance to typical simple gas (Ge et al., 2003; Ge et al., 2005). The ability of PPM to describe the dynamic transport process on the micro-scale in heterogeneous particle-fluid systems has been demonstrated in recent simulations (Ge et al., 2005). Especially, the method has been employed to study the temporal evolution of the stability criterion in the energy minimization multi-scale model (Li & Kwauk, 1994), which confirms its monotonously asymptotic decreasing as the model has assumed (Zhang et al., 2005). Massive parallel processing is also practiced for simulating particle-fluid systems in PPM, indicating an optimistic prospect to elevate the computational limitations on their wider applications, and exploring deeper underlying mechanism in complex particle-fluid systems.  相似文献   

6.
Proppants transport is an advanced technique to improve the hydraulic fracture phenomenon, in order to promote the versatility of gas/oil reservoirs. A numerical simulation of proppants transport at both hydraulic fracture (HF) and natural fracture (NF) intersection is performed to provide a better understanding of key factors which cause, or contribute to proppants transport in HF–NF intersection. Computational fluid dynamics (CFD) in association with discrete element method (DEM) is used to model the complex interactions between proppant particles, host fluid medium and fractured walls. The effect of non-spherical geometry of particles is considered in this model, using the multi-sphere method. All interaction forces between fluid flow and particles are considered in the computational model. Moreover, the interactions of particle–particle and particle–wall are taken into account via Hertz–Mindlin model. The results of the CFD-DEM simulations are compared to the experimental data. It is found that the CFD-DEM simulation is capable of predicting proppant transport and deposition quality at intersections which are in agreement with experimental data. The results indicate that the HF–NF intersection type, fluid velocity and NF aperture affect the quality of blockage occurrence, presenting a new index, called the blockage coefficient which indicates the severity of the blockage.  相似文献   

7.
泥沙颗粒受到的拖曳力是泥沙运动的主要驱动力,而当前应用于计算流体力学-离散颗粒法(CFD-DPM)耦合模型进行水沙运动模拟的泥沙颗粒拖曳力公式均没有考虑明渠流底床边壁作用的影响。求解不可压缩Navier-Stokes方程,对明渠层流不同雷诺数条件下床面附近不同高度处颗粒所受拖曳力进行了模拟,根据模拟结果变化规律,提出了综合考虑床面和水流惯性对标准拖曳力影响的修正拖曳力计算公式。与常用的单颗粒标准拖曳力公式和考虑遮蔽效应的多颗粒拖曳力公式相比,采用本文修正公式得到的水沙作用力更接近高精度数值解,应用于CFD-DPM输沙模拟获得的输沙结果与输沙率公式结果一致,应用分析表明输沙模拟应当采用粗糙底床边界。  相似文献   

8.
Wang  Fuli  Bear  Jacob  Shaviv  Avi 《Transport in Porous Media》1998,33(3):309-324
Nitrogen dynamics in the soil under the condition of environmentally friendly fertilization practices (EFFPs) is described by a comprehensive Ndynamics model. The model (first paper of this series, Transport in Porous Media 31(3) (1998), 249–274) is different from other models in its capability of simulating the special phenomena related to the application of EFFPs. In this paper, a finite difference method is used to solve the mathematical model. The numerical model is verified by simulating several water flow and conservative solute transport problems with existing numerical or analytic solutions. The good agreements between our simulation results and the solutions given by others show that our model is reliable in simulating flow and transport problems in the soil. Preliminary model validation is conducted by applying the model to simulate two field experiments. The acceptable agreements between our numerical simulation results and experimental data demonstrate that the model can reasonably model Ndynamics in the soil under field conditions.  相似文献   

9.
数据驱动的模型已经被广泛研究,并成功应用到了计算力学。基于深度学习技术,提出一种新的采用数据驱动的碎片云生成模型。此模型可以学习SPH数值模拟结果,然后在多种控制条件下快速生成碎片云。在模型训练前的数据预处理阶段,对SPH模拟结果进行空间网格划分和质量聚合,实现了改善数据分布规律、加速模型训练和提升模型泛化性的目的。以高速靶球撞击薄壁圆筒后的碎片云质量分布为例,模拟并测试了多种控制条件下深度学习模型计算结果的正确性和稳定性,以及计算速度的高效性。实验证明,深度学习模型可以从训练集学习碎片云的物理规律,然后在训练集控制参数范围内进行良好的推理及插值;并且可以在训练数据集控制参数范围外,进行小范围推理预测;同时深度学习模型的计算速度远快于SPH方法。通过深度学习方法建立碎片云模型,可能是一种在空间飞行器防护结构原型设计阶段,实现碎片云实时生成的潜在方案。  相似文献   

10.
数据驱动的模型已经被广泛研究,并成功应用到了计算力学。基于深度学习技术,提出一种新的采用数据驱动的碎片云生成模型。此模型可以学习SPH数值模拟结果,然后在多种控制条件下快速生成碎片云。在模型训练前的数据预处理阶段,对SPH模拟结果进行空间网格划分和质量聚合,实现了改善数据分布规律、加速模型训练和提升模型泛化性的目的。以高速靶球撞击薄壁圆筒后的碎片云质量分布为例,模拟并测试了多种控制条件下深度学习模型计算结果的正确性和稳定性,以及计算速度的高效性。实验证明,深度学习模型可以从训练集学习碎片云的物理规律,然后在训练集控制参数范围内进行良好的推理及插值;并且可以在训练数据集控制参数范围外,进行小范围推理预测;同时深度学习模型的计算速度远快于SPH方法。通过深度学习方法建立碎片云模型,可能是一种在空间飞行器防护结构原型设计阶段,实现碎片云实时生成的潜在方案。  相似文献   

11.
陈云敏  马鹏程  唐耀 《力学学报》2020,52(4):901-915
数值模拟和物理模拟是分析土体沉降和稳定性的主要手段. 本构模型作为描述土体应力应变关系的数学表达式, 是数值模拟的基础. 土体具有碎散性, 这一基本物理特性导致了其具有压硬性、摩擦性和剪胀性, 这是土的力学特性区别于金属的主要特征, 在土体的本构模型中必须反映这3个基本特性. 传统土力学将土体的变形和强度分离考虑, 分别采用弹性理论和基于刚塑性模型的极限平衡理论分析, 虽然应用广泛, 但由于不能全面地反映土的基本力学特性, 计算结果的精度常常难以满足定量分析的需要. 剑桥模型作为第一个全面反映压硬性、摩擦性和剪胀性的弹塑性本构模型, 实现了变形和强度的统一, 能较好地描述饱和正常固结黏土的应力应变关系, 被视为是现代土力学的开端; 统一硬化模型通过引入一个独特的硬化参数进一步发展了剑桥模型, 将适用范围扩大到超固结黏土. 作者认为, 未来岩土体本构模型研究的挑战是: 如何考虑岩土体在受力过程中土骨架相变与多场耦合, 以解决目前本构模型尚无法定量分析的能源、交通、环境和水利相关的重大岩土工程问题. 超重力物理模拟具有缩尺效应和缩时效应, 克服了常重力物理模拟中模型的应力水平低于原型的缺点, 特别适用于大尺度、长历时问题的模拟. 相较数值模拟, 超重力物理模拟的优势在于能够检验本构模型的合理性, 揭示本构模型无法描述的未知特性. 最后, 介绍了采用数值模拟和物理模拟联合分析大直径钢管桩水平受荷特性的工程案例.   相似文献   

12.
数值模拟和物理模拟是分析土体沉降和稳定性的主要手段. 本构模型作为描述土体应力应变关系的数学表达式, 是数值模拟的基础. 土体具有碎散性, 这一基本物理特性导致了其具有压硬性、摩擦性和剪胀性, 这是土的力学特性区别于金属的主要特征, 在土体的本构模型中必须反映这3个基本特性. 传统土力学将土体的变形和强度分离考虑, 分别采用弹性理论和基于刚塑性模型的极限平衡理论分析, 虽然应用广泛, 但由于不能全面地反映土的基本力学特性, 计算结果的精度常常难以满足定量分析的需要. 剑桥模型作为第一个全面反映压硬性、摩擦性和剪胀性的弹塑性本构模型, 实现了变形和强度的统一, 能较好地描述饱和正常固结黏土的应力应变关系, 被视为是现代土力学的开端; 统一硬化模型通过引入一个独特的硬化参数进一步发展了剑桥模型, 将适用范围扩大到超固结黏土. 作者认为, 未来岩土体本构模型研究的挑战是: 如何考虑岩土体在受力过程中土骨架相变与多场耦合, 以解决目前本构模型尚无法定量分析的能源、交通、环境和水利相关的重大岩土工程问题. 超重力物理模拟具有缩尺效应和缩时效应, 克服了常重力物理模拟中模型的应力水平低于原型的缺点, 特别适用于大尺度、长历时问题的模拟. 相较数值模拟, 超重力物理模拟的优势在于能够检验本构模型的合理性, 揭示本构模型无法描述的未知特性. 最后, 介绍了采用数值模拟和物理模拟联合分析大直径钢管桩水平受荷特性的工程案例.  相似文献   

13.
Strong heat source at the isolation condenser wall of an Advanced Heavy Water Reactor, results in natural convection in gravity driven water pool, which leads to a thermally stratified pool. Governing equations simulating fluid flow and heat distribution are solved numerically by a general purpose Computational Fluid Dynamics solver developed at Indian Institute of Technology, Kanpur. Incompressible finite volume method with non-staggered grid arrangement is used in this exercise. This algorithm is fully implicit and semi-coupled. Turbulent natural convection in a boundary layer for high Rayleigh numbers is analyzed by the Lam–Bremhorst k − ε turbulence model. Analysis of unsteady laminar natural convection in a side-heated water cavity is also done for different values of Rayleigh number. Results show a warm fluid layer floating on the top of gradually colder layer (along the vertical direction) that indicates the presence of thermal stratification phenomenon. This fact necessitates additional safety features in such a system so that the detrimental effect such as stratification is minimized.  相似文献   

14.
15.
介绍Euler-Lagrange框架下基于格子Boltzmann方法 LBM(Lattice Boltzmann Method)发展的两种不同层次(即不同时-空尺度和精度)的颗粒流体系统离散模拟方法,即格子Boltzmann颗粒解析直接数值模拟(LB-based PR-DNS)方法和格子Boltzmann离散颗粒模拟(LB-based DPS)方法,总结了Euler-Euler框架下基于格子Boltzmann双流体模型(LB-based TFM)方面的探索研究。LB-based PR-DNS方法中颗粒尺寸远大于格子步长,能够直接解析出流体在颗粒表面的流动以及颗粒所受完整的动力学信息;LB-based DPS方法中格子步长远大于颗粒直径,其在计算精度、时间耗费和计算效率之间能达到很好的平衡,可获得流体的宏观平均流动及颗粒的运动轨迹信息。LB-based DNS和DPS是探索颗粒流体系统的有力手段,但LB-based TFM应用于模拟颗粒流体系统仍需进一步探索。  相似文献   

16.
A CFD-DEM reaction coupling model was established to simulate UF4 fluorination process, in which heat and mass transfer, heterogeneous chemical reaction, and particle shrinkage model were considered. The gas behavior was described by the conservation laws of mass, momentum, and energy. The solid phase is modeled with the discrete element method, considering the gas–solid interphase force, contact force, heat transfer, and chemical reaction models based on the discretized surface. Each particle can be individually tracked and associated with specific physical properties. The proposed CFD-DEM reaction coupling model based on particle shrinking reaction model with discretized surface was validated by the experimental and literature results at first. Then a multistage conical spouted bed was proposed and the process of UF4 fluoridation reaction in it was investigated. The fluidization characteristics and the concentration distribution of gaseous products in the spouted bed with an extended gas velocity range were obtained and analyzed. In addition, the effects of different parameters, such as superficial gas velocity, temperature, fluorine concentration, on fluoridation rate and the fluorine conversion rate were investigated based on the proposed CFD-DEM reaction coupling model. The results obtained in this work are beneficial for method development of the chemical reaction simulation research in particle scale using the CFD-DEM model, and useful for operation and equipment parameters design of the uranium tetrafluoride fluorinate industrial process in the future.  相似文献   

17.
本文提出了利用计算机模拟输出实施系统识别的方法,并把这种概念性方法称之为“计算系统识别”。其基本点是,用计算机仿真模型和方法替代通常系统识别研究中的真实系统(或模拟试验系统)和试验方法那一部分,而实现通常系统识别研究的原定目标。联系结构模型化工作,文中报告了一例安全壳结构弯剪梁模型的识别结果。文章还介绍了一个解有约束极小化问题的修正单纯形法,用以完成结构物理参数的寻优任务。  相似文献   

18.
基于玻尔兹曼模型方程的气体运动论统一算法(gas kinetic unified algorithm,GKUA) 给出了一种能模拟从连续流到自由分子流跨流域空气动力学问题的途径. 该算法采用传统计算流体力学技术将分子运动和碰撞解耦处理,若采用显式格式将受格式稳定条件限制,在模拟超声速流动尤其是近连续流和连续流区的流动时计算效率较低. 为了提高计算效率,扩展其工程实用性,采用上下对称高斯-赛德尔(LU-SGS) 方法和有限体积法构造了求解玻尔兹曼模型方程的隐式方法,同时在物理空间采用能处理任意连接关系的多块对接网格技术. 通过模拟近连续过渡区并排圆柱绕流问题,计算结果与直接模拟蒙特卡洛方法模拟值吻合较好,验证了该方法用于跨流域空气动力计算的可靠性与可行性.   相似文献   

19.
Particle polydispersity is ubiquitous in industrial fluidized beds, which possesses a significant impact on hydrodynamics of gas–solid flow. Computational fluid dynamics-discrete element method (CFD-DEM) is promising to adequately simulate gas–solid flows with continuous particle size distribution (PSD) while it still suffers from high computational cost. Corresponding coarsening models are thereby desired. This work extends the coarse-grid model to polydisperse systems. Well-resolved simulations with different PSDs are processed through a filtering procedure to modify the gas–particle drag force in coarse-grid simulations. We reveal that the drag correction of individual particle exhibits a dependence on filtered solid volume fraction and filtered slip velocity for both monodisperse and polydisperse systems. Subsequently, the effect of particle size and surrounding PSD is quantified by the ratio of particle size to Sauter mean diameter. Drag correction models for systems with monodisperse and continuous PSD are developed. A priori analysis demonstrates that the developed models exhibit reliable prediction accuracy.  相似文献   

20.
土体颗粒物流动是一种典型的大变形破坏,具有非牛顿流体的流动特征。准确模拟土体颗粒物的流动及冲击过程,对滑坡和泥石流等地质灾害的防治具有重要意义。物质点法是一种无网格粒子类方法,已在各类大变形问题中得到了广泛应用。以往土体颗粒物流动的模拟,通常采用弹塑性本构模型,但缺乏对非牛顿本构模型的模拟分析。本文引入非牛顿本构模型的模拟分析,旨在为土体颗粒物流动模拟提供一种新的方法与思路。非牛顿本构模型的模拟分析是将非牛顿广义Cross模型引入三维物质点法,通过人工阻尼力模拟颗粒间的摩擦力,对土体颗粒物的坍塌、沿斜面滑动以及冲击障碍物等问题进行了动态模拟,研究了其运动全过程,并与弹塑性本构模型的模拟结果进行了对比验证。结果表明,基于非牛顿流体本构模型的物质点法可以较好地模拟土体颗粒物加速、减速到再次稳定的流动全过程及其对障碍物的冲击效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号