首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Many studies on cavitation phenomena were based on the theoryof single bubble motion which was first put forward by Rayleighin his1917 article and later developed by plesset et al.Bythis theory,only some effects of forces were taken into conside.ration from hydrodynamics leaving out any thermodynamical effectssuch as matter interchange between liquid and gaseous phases.Strictly speaking,the theory may be suitable for discussing ex-pansion or/and contraction motion of a bubble formed in liquid,but this theory does not cpoe with cavitation behaviors in general.In this paper,the cavitation conditions and similarity problemsare discussed with thermodynamic effects taken into considerationin addition to the hydrodynamic ones.  相似文献   

2.
This study utilizes a U-shape platform device to generate a single cavitation bubble for a detailed analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse caused by sending a pressure wave. A high speed camera is used to record the flow field of the bubble collapse at different distances from a solid boundary. It is found that a Kelvin–Helmholtz vortex is formed when a liquid jet penetrates the bubble surface after the bubble is compressed and deformed. If the bubble center to the solid boundary is within one to three times the bubble’s radius, a stagnation ring will form on the boundary when impinged by the liquid jet. The fluid inside the stagnation ring will be squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble’s radius, the bubble collapse flow will vary. Depending on the strengths of the pressure waves applied, the collapse can produce a Kelvin–Helmholtz vortex, the Richtmyer–Meshkov instability, or the generation of a counter jet flow. If the bubble surface is in contact with the solid boundary, the liquid jet can only move inside-out without producing the stagnation ring and the counter jet; thus, the bubble collapses along the radial direction. The complex phenomenon of cavitation bubble collapse flows is clearly manifested in this study.  相似文献   

3.
田北晨  李林敏  陈杰  黄彪  曹军伟 《力学学报》2022,54(6):1557-1571
空化的多尺度效应是一种涉及连续介质尺度、微尺度空化泡以及不同尺度间相互转化的复杂水动力学现象, 跨尺度模型的构建是解析该多尺度现象的关键. 本文基于欧拉-拉格朗日联合算法, 通过界面捕捉法求解欧拉体系下大尺度空穴演化, 通过拉格朗日体系下离散空泡模型求解亚网格尺度离散空泡的运动及生长溃灭. 同时, 通过判断空泡与网格尺度间的关系判定不同尺度空化泡的求解模型. 基于建立的多尺度算法对绕NACA66水翼空化流动进行模拟, 将数值结果与实验进行对比, 验证了数值计算方法的准确性. 研究结果表明, 离散空泡数量与空化发展阶段密切相关, 在附着型片状空穴生长阶段, 离散空泡数量波动较小, 离散空泡主要分布在气液交界面位置; 在回射流发展阶段, 离散空泡逐渐增加并分布在回射流扰动区; 在云状空穴溃灭阶段, 离散空泡数量增多且主要分布在气液掺混剧烈的空化云团溃灭区. 在各空化发展阶段, 离散空泡直径概率密度函数均符合伽玛分布. 空化湍流流场特性对拉格朗日空泡空间分布具有重要影响, 离散空泡主要分布在强湍脉动区、旋涡及回射流发展区域.   相似文献   

4.
《力学学报》2009,41(1):8
根据考虑了液体可压缩性的改进的微气泡动力学方程,采用改进的初始半径对单泡超声空化现象进行了数值计算研究. 结果表明,微气泡振动对一些参量很敏感:微气泡振动半径与初始半径的比值随振动频率的增大而减小;提高声场声压会加剧气泡崩塌程度,但过高的声压又不能使微气泡崩塌;微气泡崩塌速率随气泡初始半径的增加而增大,在一定范围内能保证空化泡稳定振动,在初始半径为1.6\,$\mu$m 处空化程度最强,如果继续增大初始半径则空化程度减弱、甚至消失;微气泡崩塌程度随黏滞系数和表面张力的增大而减弱,过大的黏滞系数和表面张力会使微气泡崩塌难以发生. 计算结果与他人的实验数据相比,发现液体的可压缩性使单泡空化强度增强, 对最佳空化区域范围的确定有较大的影响.  相似文献   

5.
The present work deals with the numerical investigation of a collapsing bubble in a liquid–gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non‐conservative transport equations of the pressure law coefficients. The original first‐order discretization is extended to higher order applying second‐order ENO reconstruction to the primitive variables. The derivation of the non‐conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale‐based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2‐D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser‐induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The evolution of the radius of a spherical cavitation bubble in an incompressible non-Newtonian liquid under the action of an external acoustic field is investigated. Non-Newtonian liquids having relaxation properties and also pseudoplastic and dilatant liquids with powerlaw equation of state are studied. The equations for the oscillation of the gas bubble are derived, the stability of its radial oscillation and its spherical form are investigated, and formulas are given for the characteristic frequency of oscillations of the cavitation hollow in a relaxing liquid. The equations are integrated numerically. It is shown that in a relaxing non-Newtonian liquid the viscosity may lead to the instability of the radial oscillations and the spherical form of the bubble. The results obtained here are compared with the behavior of a gas bubble in a Newtonian liquid.  相似文献   

7.
8.
Vapour bubble dynamics in cryogenic and boiling liquids affected by an acoustic field is considered. Linear pulsations and nonstationary growth of vapour bubbles in time due to linear effects of rectified heat and mass transfer are studied. The growth thresholds of vapour bubbles depending on thermodynamic parameters of liquid, static overcompression, and acoustic field frequency are presented. Essential influence of resonance properties of bubbles on the values of growth thresholds is shown. The results for different cryogenic liquids and boiling water are given.  相似文献   

9.
An understanding of the phenomena associated with cavitation is important in many areas of science and engineering. This paper is concerned with the influence of viscoelasticity on the dynamics of cavitation bubbles near rigid boundaries. Viscoelastic effects are modelled using a Maxwell constitutive equation, and a generalized Bernoulli equation is derived. The governing equations are solved using the boundary element method in which both the bubble surface and the potential are represented by cubic splines. The numerical scheme is validated through comparisons with results in the literature for the inviscid case. The introduction of viscoelasticity introduces some interesting bubble dynamics including the occurrence of oscillations during collapse. Most importantly, it is shown that viscoelasticity can serve to suppress the formation of a liquid jet. The subsequent reduced pressures compared with the inviscid case suggest that viscoelasticity has a mitigating effect on cavitation damage.  相似文献   

10.
Population balance equations combined with Eulerian–Eulerian two-phase model are employed to predict the polydispersed bubbly flow inside the slab continuous-casting mold. The class method, realized by the MUltiple-SIze- Group (MUSIG) model, alongside with suitable bubble breakage and coalescence kernels is adopted. A two-way momentum transfer mechanism model combines the bubble induced turbulence model and various interfacial forces including drag, lift, virtual mass, wall lubrication, and turbulent dispersion are incorporated in the model. A 1/4th scaled water model of the slab continuous-casting mold was built to measure and investigate the bubble behavior and size distribution. A high speed video system was used to visualize the bubble behavior, and a digital image processing technique was used to measure the mean bubble diameter along the width of the mold. Predictions by previous mono-size model and MUSIG model are compared and validated against experimental data obtained from the water model. Effects of the water flow rate and gas flow rate on the mean bubble size were also investigated. Close agreements by MUSIG model were achieved for the gas volume fraction, liquid flow pattern, bubble breakage and coalescence, and local bubble Sauter mean diameter against observations and measurements of water model experiments.  相似文献   

11.
Hydrodynamic cavitation and its feasibility for volatile compound removal in enclosed channels is discussed in this paper. Very high Reynolds numbers are needed to rupture liquid by decreasing its pressure below its saturated vapour pressure. Hence, a simple stratified flow, at which the two phases separate, is precluded in vertical and horizontal tubes, where turbulence stresses will be much larger than the buoyant forces. The most probable flow regime at this high turbulence regime is a bubble- or annular flow, where the volatile matter tends to concentrate in the centre of the pipe because of the lift force resulting from the unequal flow of the viscous liquid around the bubbles in the presence of the pipe wall. Therefore, boiling the volatile matter for volatile compound removal is not enough if hydrodynamic cavitation is pursued. The attainable efficiency must also be assessed. An expression for the volatile removal efficiency and the main parameters affecting this efficiency were derived by utilising a simplified geometrical and physical model. The efficiency was found to approximate a power law as a function of the volatile concentration and its strong dependence on the size of the volatile bubble reasonably well. This result implied the need of bubble growth and the limitation of the process for highly concentrate compounds to a few percent concentrations. With regard to energetic requirements, both thermal and hydrodynamic cavitations are quantitatively similar. Furthermore, the choice of one or another corresponds more to the kind of energy source available.  相似文献   

12.
13.
The aim of this work is to investigate the non‐equilibrium effects of phase change in cavitating flows. For this purpose, the concept of phase change thermodynamic probability is used along with homogeneous model to simulate two‐phase cavitating flows. For simulation of unsteady behaviors of cavitation, which have practical applications, unsteady PISO algorithm based on the non‐conservative approach is utilized. For multi‐phase simulation, single‐fluid Navier–Stokes equations, along with the volume fraction transport equation, are employed. In this paper, phase change thermodynamics probabilities and cavitation model is briefly summarized. Thus, derivation of the cavitation model, starting from the basic thermodynamic equations to the mass and momentum conservation equations at a liquid–vapor two‐phase flow, is presented to explain the numerical model. Unsteady simulations of cavitation around a flat plate normal to flow direction are presented to clarify the accuracy of the model. The accuracy of the numerical results is good, and it is possible to apply this method to more complex geometries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A 2D numerical model is proposed to simulate unsteady cavitating flows. The Reynolds‐averaged Navier–Stokes equations are solved for the mixture of liquid and vapour, which is considered as a single fluid with variable density. The vapourization and condensation processes are controlled by a barotropic state law that relates the fluid density to the pressure variations. The numerical resolution is a pressure‐correction method derived from the SIMPLE algorithm, with a finite volume discretization. The standard scheme is slightly modified to take into account the cavitation phenomenon. That numerical model is used to calculate unsteady cavitating flows in two Venturi type sections. The choice of the turbulence model is discussed, and the standard RNG k–εmodel is found to lead to non‐physical stable cavities. A modified k–εmodel is proposed to improve the simulation. The influence of numerical and physical parameters is presented, and the numerical results are compared to previous experimental observations and measurements. The proposed model seems to describe the unsteady cavitation behaviour in 2D geometries well. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The oscillating properties of laser-induced cavitation bubbles in water are investigated by means of a fiber-optic sensor based on optical beam deflection. The experimental results show two important points. One is that the smaller the bubble radius the more quickly the bubble surface moves. Thus, the variations of the temperature and the pressure inside the bubble will be close to those of an adiabatic process. The other is that the high-energy vapor inside the newborn bubble diffuses and coagulates rapidly through violent expansion and thermal conduction. Thus, the gas content of the bubble reduces significantly in the first oscillation. Numerical simulation is made for the bubble model with consideration of liquid viscosity, surface tension, and gas content. Through modification of the polytropic index and the gas content parameter, two parameters of this model, the numerical results fit the experimental results well.  相似文献   

16.
Cavitation in hydraulic machines causes different problems that can be related to its unsteady nature. An experimental and numerical study of developed cavitating flow was performed. Until now simulations of cavitating flow were limited to the self developed “in house” CFD codes. The goal of the work was to experimentally evaluate the capabilities of a commercial CFD code (Fluent) for simulation of a developed cavitating flow. Two simple hydrofoils that feature some 3D effects of cavitation were used for the experiments. A relatively new technique where PIV method combined with LIF technique was used to experimentally determine the instantaneous and average velocity and void ratio fields (cavity shapes) around the hydrofoils. Distribution of static pressure on the hydrofoil surface was determined. For the numerical simulation of cavitating flow a bubble dynamics cavitation model was used to describe the generation and evaporation of vapour phase. An unsteady RANS 3D simulation was performed. Comparison between numerical and experimental results shows good correlation. The distribution and size of vapour structures and the velocity fields agree well. The distribution of pressure on the hydrofoil surface is correctly predicted. The numerically predicted shedding frequencies are in fair agreement with the experimental data.  相似文献   

17.
Single cavitation bubbles exhibit severe modeling and simulation difficulties. This is due to the small scales of time and space as well as due to the involvement of different phenomena in the dynamics of the bubble. For example, the compressibility, phase transition, and the existence of a noncondensable gas inside the bubble have strong effects on the dynamics of the bubble. Moreover, the collapse of the bubble involves the occurrence of critical conditions for the pressure and temperature. This adds extra difficulties to the choice of equations of state. Even though several models and simulations have been used to study the dynamics of the cavitation bubbles, many details are still not clearly accounted for. Here, we present a numerical investigation for the collapse and rebound of a laser‐induced cavitation bubble in liquid water. The compressibility of the liquid and vapor are involved. In addition, great focus is devoted to study the effects of phase transition and the existence of a noncondensable gas on the dynamics of the collapsing bubble. If the bubble contains vapor only, we use the six‐equation model for two‐phase flows that was modified in our previous work [A. Zein, M. Hantke, and G. Warnecke, J. Comput. Phys., 229(8):2964‐2998, 2010]. This model is an extension to the six‐equation model with a single velocity of Kapila et al. (Phys. Fluid, 13:3002‐3024, 2001) taking into account the heat and mass transfer. To study the effect of a noncondensable gas inside the bubble, we add a third phase to the original model. In this case, the phase transition is considered only at interfaces that separate the liquid and its vapor. The stiffened gas equations of state are used as closure relations. We use our own method to determine the parameters to obtain reasonable equations of state for a wide range of temperatures and make them suitable for the phase transition effects. We compare our results with experimental ones. Also our results confirm some expected physical phenomena. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Flow regime transitions due to cavitation in the flow through an orifice   总被引:4,自引:0,他引:4  
This paper presents both experimental and theoretical aspects of the flow regime transitions caused by cavitation when water is passing through an orifice. Cavitation inception marks the transition from single-phase to two-phase bubbly flow; choked cavitation marks the transition from two-phase bubbly flow to two-phase annular jet flow.

It has been found that the inception of cavitation does not necessarily require that the minimum static pressure at the vena contracta downstream of the orifice, be equal to the vapour pressure liquid. In fact, it is well above the vapour pressure at the point of inception. The cavitation number [σ = (P3Pv)/(0.5 pV2); here P3 is the downstream pressure, Pv is the vapour pressure of the liquid, ρ is the density of the liquid and V is the average liquid velocity at the orifice] at inception is independent of the liquid velocity but strongly dependent on the size of the geometry. Choked cavitation occurs when this minimum pressure approaches the vapour pressure. The cavitation number at the choked condition is a function of the ratio of the orifice diameter (d) to the pipe diameter (D) only. When super cavitation occurs, the dimensionless jet length [L/(D - d); where L is the dimensional length of the jet] can be correlated by using the cavitation number. The vaporization rate of the surface of the liquid jet in super cavitation has been evaluated based on the experiments.

Experiments have also been conducted in which air was deliberately introduced at the vena contracta to simulate the flow regime transition at choked cavitation. Correlations have been obtained to calculate the critical air flow rate required to cause the flow regime transition. By drawing an analogy with choked cavitation, where the air flow rate required to cause the transition is zero, the vapour and released gas flow rate can be predicted.  相似文献   


19.
This work presents a sensitivity analysis for cavitation processes, studying in detail the effect of various model parameters on the bubble collapse. A complete model (Hauke et al. Phys Rev E 75:1–14, 2007) is used to obtain how different parameters influence the collapse in SBSL experiments, providing some clues on how to enhance the bubble implosion in real systems. The initial bubble radius, the frequency and the amplitude of the pressure wave are the most important parameters determining under which conditions cavitation occurs. The range of bubble sizes inducing strong implosions for different frequencies is computed; the initial radius is the most important parameter characterized the intensity of the cavitation processes. However, other parameters like the gas and liquid conductivity or the liquid viscosity can have an important effect under certain conditions. It is shown that mass transfer processes play an important role in order to correctly predict the trends related with the effect of the liquid temperature, which translates into the bubble dynamics. Moreover, under some particular circumstances, evaporation can be encountered during the bubble collapse; this can be profitably exploited in order to feed reactants when the most extreme conditions inside the bubbles are reached. Thus, this paper aims at providing a global assessment of the effect of the different parameters on the entire cycle of a single cavitating spherical bubble immersed in an ultrasonic field. This work has been partially supported by Ministerio de Ciencia y Tecnologia, under grant number CTM2004-06184-C02-02.  相似文献   

20.
Large eddy simulation is performed to investigate air entrainment and mixing in diesel sprays with and without combustion. The Spray A case of the Engine Combustion Network (ECN) is considered in the study, in which liquid n-Dodecane is injected at 1500 bar through a nozzle of 90 μm into a constant volume vessel with an ambient density of 22.8 kg/m3 and an ambient temperature of 900 K. Primary and secondary breakup processes of the liquid fuel are taken into account. The gas and liquid phases are modeled using Eulerian/Lagrangian coupling approach. Detailed chemical kinetics for n-Dodecane is employed to simulate the ignition process and the lifted flames. A chemistry coordinate mapping approach is used for speeding up the calculations. The effect of low temperature ignition (cool flame) on the evaporation process and on the liquid penetration length is analyzed. The effect of combustion heat release from the lifted flames on the vapor spreading in the radial direction and on the vapor transport in the streamwise direction (vapor penetration) is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号