首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an Euler–Lagrange method for the simulation of wood gasification in a bubbling fluidized bed. The gas phase is modeled as a continuum using the 2D Navier–Stokes equations and the solid phase is modeled by a Discrete Element Method(DEM)using a soft-sphere approach for the particle collision dynamic. Turbulence is included via a Large-Eddy approach using the Smagorinsky sub-grid model.The model takes into account detailed gas phase chemistry,zero-dimensional modeling of the pyrolysis and gasification of each individual particle,particle shrinkage,and heat and mass transfer between the gas phase and the particulate phase.We investigate the influence of wood feeding rate and compare exhaust gas compositions and temperature results obtained with the model against experimental data of a laboratory scale bubbling fluidized bed reactor.  相似文献   

2.
We present an Euler–Lagrange method for the simulation of wood gasification in a bubbling fluidized bed. The gas phase is modeled as a continuum using the 2D Navier–Stokes equations and the solid phase is modeled by a Discrete Element Method (DEM) using a soft-sphere approach for the particle collision dynamic. Turbulence is included via a Large-Eddy approach using the Smagorinsky sub-grid model. The model takes into account detailed gas phase chemistry, zero-dimensional modeling of the pyrolysis and gasification of each individual particle, particle shrinkage, and heat and mass transfer between the gas phase and the particulate phase. We investigate the influence of wood feeding rate and compare exhaust gas compositions and temperature results obtained with the model against experimental data of a laboratory scale bubbling fluidized bed reactor.  相似文献   

3.
Convective motions of the phases in a homogeneous fluidized bed are considered. The motions of the phases are described by a simple model of two ideal interpenetrating interacting fluids. The model admits an increasing concentration of the solid particles with the height, which leads to circulatory flows. Approximate equations of motion of the liquid and the solid particles are obtained, and these are analogous to the Boussinesq approximation in the case of natural convection in a pure liquid. The equations contain a parameter which is analogous to the Rayleigh number and characterizes the stability of the layer. An approximate analytic solution to the corresponding eigenvalue problem is found. The spectrum of Rayleigh numbers and the sizes of the convective cells are determined. The obtained results provide an explanation for the existence of the multicenter circulatory motions of the phases frequently observed in a fluidized beds and make it possible to determine the sizes of the circulatory regions. Information about the Rayleigh number spectrum and the sizes of the regions is needed to solve the problem of the scale transition and also to enable the choice of measures to suppress or intensify the displacement processes.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 39–46, July–August, 1982.  相似文献   

4.
The particle phase of a gas-particle flow inside a bubbling fluidized bed is characterized by strong unsteady flow patterns and intense meso-scale fluctuations that give rise to an intense mixing rate. As such, it is important to gain a deeper insight into how particle-flow structures and the associated fluctuating velocity field contribute to the overall bed dynamics. To this end, advanced post-processing methodologies, i.e., the Proper Orthogonal Decomposition (POD) and the swirling strength criterion, are applied to the particle flow fields predicted by a “two-fluid model” of a cylindrical bubbling bed to identify and analyze the dominant spatio-temporal patterns of the particle phase. Three-dimensional POD results indicate that the dominant particle fluctuating velocity patterns are principally aligned in the axial direction, corresponding to particle mixing by the bubble wakes, with significant laterally directed fluctuating velocity vectors at the bed surface, corresponding to mixing caused by the bubbles bursting. The particle velocity gradient tensor is decomposed based on the swirling strength criterion and reveals formation of extended and flat structures that may be considered as a characteristic feature of the particle vortical motions in bubbling beds.  相似文献   

5.
In this paper, the effect of a novel rotating distributor for fluidized beds on the bubble size is studied. The distributor is a perforated plate that rotates around the vertical axis of the column.The formation of the bubbles on the rotating distributor is theoretically analyzed. The pierced length of the bubbles ascending in the bed were measured using optical probes. The probability distribution of bubble diameter was inferred from these experimental measurements using the maximum entropy method. The radial profile of the bubble diameter is presented for the static and rotating configurations at different gas velocities. The frequency of bubble passage and the distribution of bubbles in the cross section of the bed are also reported. Results were finally shown for different heights above the distributor.A radial decrease in the bubble size when the distributor rotates is found. The bubble growth with the bed height is also lower in the rotating case.  相似文献   

6.
7.
Particle-particle and particle-wall collisions in gas-solid fluidized beds lead to charge accumulation on particles.This work evaluated the effect of fluidization time on charge transfer and bipolar charging(charge separation)and their influence on hydrodynamic structures in a fluidized bed.Experiments were performed with glass beads and polyethylene particles in a glass column.The pressure fluctuations and net electrostatic charge of particles were measured during fluidization.Wavelet and short-time Fourier transforms were used to analyze pressure fluctuations.The results revealed that bipolar charging is the dominant tribocharging mechanism in a bed of glass beads.Bipolar charging in a bed of particles with a narrow size distribution does not affect either hydrodynamic structures or the transition velocity to the turbulent regime.A large difference between the work functions of the wall and particle in the bed of polyethylene particles leads to high charge transfer.Formation of a stagnant particle layer on the wall eventually causes the energy of macro-structures to increase to its maximum.At longer fluidization times,the macro-structural energy decreases and bubbles shrink until the electrostatic charge reaches the equilibrium level.These results well describe the effect of fluidization time on hydrodynamic structures.  相似文献   

8.
Most existing models for predicting bubble size and bubble frequency have been developed for freely bubbling fluidized beds. Accurate prediction of bubbling behavior in deep fluidized beds, however, has been a challenge due to the higher degree of bubble coalescence and break up, high probability of the slugging regime, partial fluidization, and chaotic behavior in the bubbling regime. In this work, the bubbling and fluidization behavior of potash particles was investigated in a deep fluidized bed employing a twin-plane electrical capacitance tomography (ECT) system. Solid volume fraction, average bubble velocity, average bubble diameter, and bubble frequency in both bubbling and slugging regimes were measured at two different bed height ratios (H/D = 3.5 and H/D = 3.78). This work is the first to illustrate a sequential view of bubbles at different superficial gas velocities in a fluidized bed. The results show that both the bubble diameter and rising velocity increased with increasing the superficial gas velocity for the two bed heights, with larger values observed in the deeper bed compared to the shallower one. Predicted values for bubble diameter, bubble rise velocity and bubble frequency from different models are compared with the experimental data obtained from the ECT system in this work. Good agreement has been achieved between the values predicted by the previous models and the experimental data for the bubble diameter and bubble rise velocity with an average absolute deviation of 16% and 15% for the bed height of 49 cm and 13% and 8% for the bed height of 53 cm, respectively.  相似文献   

9.
The discrete hard sphere particle model (DPM) is applied in this work to study numerically the distributions of particle and bubble granular temperatures in a bubbling fluidized bed. The dimensions of the bed and other parameters are set to correspond to those of Müller et al. (2008). Various drag models and operational parameters are investigated to find their influence on particle and bubble granular temperatures. Various inlet superficial gas velocities are used in this work to obtain their effect on flow characteristics. It is found that the superficial gas velocity has the most important effect on granular temperatures including bubble granular temperature, particle translational granular temperature and particle rotational granular temperature. The drag force model affects more seriously the large scale variables such as the bubble granular temperature. Restitution coefficient influences all granular temperatures to some degree. Simulation results are compared with experimental results by Müller et al. (2008) showing reasonable agreement.  相似文献   

10.
In this work,a discrete particle model(DPM) was applied to investigate the dynamic characteristics in a gas-solid bubbling fluidized bed of binary solid particles.The solid phase was simulated by the hardsphere discrete particle model.The large eddy simulation(LES) method was used to simulate the gas phase.To improve the accuracy of the simulation,an improved sub-grid scale(SGS) model in the LES method was also applied.The mutative Smagorinsky constant case was compared with the previously published experimental data.The simulation by the mutative Smagorinsky constant model exhibited better agreement with the experimental data than that by the common invariant Smagorinsky constant model.Various restitution coefficients and different compositions of binary solids were investigated to determine their influences on the rotation characteristics and granular temperatures of the particles.The particle translational and rotational characteristic distributions were related to certain simulation parameters.  相似文献   

11.
In this work, a discrete particle model (DPM) was applied to investigate the dynamic characteristics in a gas–solid bubbling fluidized bed of binary solid particles. The solid phase was simulated by the hard-sphere discrete particle model. The large eddy simulation (LES) method was used to simulate the gas phase. To improve the accuracy of the simulation, an improved sub-grid scale (SGS) model in the LES method was also applied. The mutative Smagorinsky constant case was compared with the previously published experimental data. The simulation by the mutative Smagorinsky constant model exhibited better agreement with the experimental data than that by the common invariant Smagorinsky constant model. Various restitution coefficients and different compositions of binary solids were investigated to determine their influences on the rotation characteristics and granular temperatures of the particles. The particle translational and rotational characteristic distributions were related to certain simulation parameters.  相似文献   

12.
An ultra-fast X-ray tomographic scanner is applied to study the hydrodynamics in a bubbling fluidized bed with and without vertical internals (e.g., heat exchanger tubes). The objective of this study is to understand the influence of vertical internals on hydrodynamic properties such as bubble volume, size and velocity and to provide measurement data for the design and scale-up of catalytic bubbling fluidized bed reactors with vertical internals. With these new measurements, correlations of bubble properties can be developed to reliably scale-up bubbling fluidized beds with vertical internals. For the investigated reactor with Geldart A/B particles, no relation between bubble size and velocity was observed for individual bubbles, i.e.; smaller bubbles tend to rise with higher velocities. A significant reduction in bubble size and sharpening of the bubble size distribution was generally obtained for a bed with vertical internals.  相似文献   

13.
Fluidized bed drying kinetics of highly porous material which offers free flow of moisture to surface of the material is modeled utilizing the simplified bubbling bed model. The simplification step utilizes estimation of the overall transfer resistance, by summing all the resistances from the bubble phase to the emulsion phase. The model predictions are compared with the published experimental data covering the operating variables such as the inlet air temperature, the air flow rate, material characteristics and are found to match satisfactorily. The model highlights the importance of bubble size estimation, as it largely dictates the drying kinetics.  相似文献   

14.
In this paper a numerical analysis of the heat transfer between a bubbling fluidized bed of mono-dispersed glass beads of Geldart type B and an immersed heated tube bundle is investigated. The numerical procedure is based on a solution of the mass, momentum and energy equations of both phases with an Eulerian approach. Different physical models for the thermal transport coefficient of the solid phase were used. The results are compared with new experimental data. The numerical and the experimental results show a strong correlation between fluid dynamics and heat transfer similar to the packet theory of Mickley and Fairbanks (1955). B Defined in equation (15) – - c p Specific heat J/kg/K - d s Particle diameter m - d Tube Diameter of the heat transfer tube m - g, Gravitational constant m/s2 - g 0 Radial distribution function – - h Specific enthalpy J/kg - k Solids fluctuating energy diffusion coefficient Pa s - Nu Nusselt number – - p Pressure N/m2 - p s Solid pressure N/m2 - Heat flux W - Heat flux W - Re Reynolds number – - T Temperature K - T(t) Measured foil temperature K - t Time s - tr Trace of a tensor (sum of main-diagonal elements) m/s - v Velocity, v-direction m/s - Velocity vector m/s - x x-coordinate m - y y-coordinate m - Volumetric interphase heat transfer coefficient W/m3/K - Bed-to-wall heat transfer coefficient W/m2/K - gs Fluid-particle heat transfer coefficient W/m2/K - T Heat transfer coefficient at tube surface W/m2/K - Interphase drag coefficient kg/m3/s - Thickness of CuNi foil m - Dissipation of fluctuating energy Pa/s - Volume fraction – - Angle ° - Thermal conductivity W/m/K - cyl Defined in equation (13) – - Fluctuating energy exchange Pa/s - Volumetric heat generation rate W/m3 - Density kg/m3 - Granular temperature m2/s2 - Viscous stress tensor N/m2 - Defined in equation (14) – - Bulk Bulk properties - g Gas phase - gas Gas - i i = g, s (gas or solid) - m Mixture - pen Penetration theory - pm Particle material - s Solid phase - T Tube - Tube Tube - t total - W Wall - * Parameter multiplied by the volume fraction of its phase  相似文献   

15.
DEM simulation of polydisperse systems of particles in a fluidized bed   总被引:1,自引:0,他引:1  
Numerical simulations based on three-dimensional discrete element model (DEM) are conducted for mono-disperse, binary and ternary systems of particles in a fluidized bed. Fluid drag force acting on each particle depending on its size and relative velocity is assigned. The drag coefficient corresponding to Ergun’s correlation is applied to the system of fluidized bed with particle size ratios of 1:1 for the mono-disperse system, 1:1.2, 1:1.4 and 1:2 for the binary system and 1:1.33:2 for the ternary system b...  相似文献   

16.
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process.Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-off between computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient.A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementation is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases.For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations. The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system.The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted.  相似文献   

17.
18.
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process. Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-offbetween computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient. A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementa- tion is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases, For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations, The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system, The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted.  相似文献   

19.
Nan Zhang  Bona Lu  Wei Wang  Jinghai Li   《Particuology》2008,6(6):529-539
Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model was used to simulate a semi-industry scale circulating fluidized bed (CFB). Three-dimensional (3D), time-dependent simulation of a full-loop CFB revealed that the axial profiles of cross-sectionally averaged solid volume fraction, and the radial profiles of solid axial velocity and solid volume fraction were in reasonable agreement with experimental data. Based on this agreement, database derived from experiments not yet accomplished was replenished with such simulations, and fluid regime diagrams and pressure balance around the CFB loop were derived accordingly. This work presents an integrated viewpoint on CFB and unfolds a fresh paradigm for CFB modeling, which can be expected to help resolve certain issues long in dispute but bard for experiments.  相似文献   

20.
Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-male (EMMS) model was used to simulate a semi-industry scale circulating fiuidized bed (CFB).Three-dimensional(3D), time-dependent simulation of a full-loop CFB revealed that the axial profiles of cross-sectionally averaged solid volume fraction,and the radial profiles of solid axial velocity and solid volume fraction were in reasonable agreement with experimental data.Based on this agreement,database derived from experiments not yet accomplished was replenished with such simulations, and fluid regime diagrams and pressure balance around the CFB loop were derived accordingly. This work presents an integrated viewpoint on CFB and unfolds a fresh paradigm fur CFB modeling, which can be expected to help resolve certain issues long in dispute but hard for experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号