首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contact electrification is one of the most well-known phenomena in physics and examples arise in almost every industry. However, a scientific basis for contact charging remains unknown. Here, we present a theoretical study of contact electrification, supported by experiments, to calculate for the first time charge transfer between material surfaces from first principles physics. Electronic structure calculations and experiments are performed on single-crystal alumina (sapphire) and silicon oxide (quartz) surfaces, which have well-ordered structures that enable rigorous modeling. Both experiments and calculations show that sapphire charges positively and quartz charges negatively. The calculations cannot determine the magnitude of charge densities remaining on separated surfaces from first principles, as these are non-equilibrium effects, but our analysis is consistent with experimentally obtained charge densities of 10 μC/m2. These results indicate the possibility of quantitatively predicting and explaining contact electrification from only the molecular structure of material surfaces.  相似文献   

2.
A method for studying contact electrification charge between different materials was developed. Physical models for the contact electrification measurement system of metal/metal, metal/insulator and insulator/insulator were proposed, where the relationships between charge and measuring potential were developed. According to the models, an electrification charge measurement system was built. As an example of using the method, contact electrification experiment between polytetrafluoroethylene (PTFE) and carbon steel plates was conducted. Comparison of the charge results by this method and Faraday cup method was made, which suggested that the current method reduced the error resulted from the charge dissipation.  相似文献   

3.
We measured the pattern of charging by contact electrification, following contact between a polydimethylsiloxane (PDMS) stamp and a glass substrate with gold electrodes. We used scanning Kelvin probe microscopy to map the surface potential at the same regions before and after contact, allowing a point-by-point comparison. After contact, the mean surface potential of the glass shifted by 360 mV and micron-scale heterogeneity appeared with a magnitude of ∼100 mV. The gold electrodes showed charge transfer but no discernible heterogeneity. These results show that contact electrification causes heterogeneity of surface potential even on non-polymer surfaces such as glass under ambient conditions.  相似文献   

4.
Based on the contact charge transfer model between two particles due to a single collision proposed by Apodaca, the contact charges carried on a particle is derived due to multiple collisions, including the repeat collisions between two particles and the collisions with different particles, in mixed-size granular system of identical material. The effect of the particle size on the charges carried on the particle is simulated. The results indicate that for a mixed-size granular system, due to multiple collisions among particles, there exists a threshold particle radius, the particles with radius higher than which and the particles with radius lower than which carry opposite charges. The threshold particle radius is equal to mean value of particle size in the mixed-size granular system. Basically, the polarity of the charges carried on the largest particle is same as the polarity of the transfer charge carrier, and in case of the positive charge transferred, the largest particle will be positively charged and the smallest particle will be negatively charged, and vice versa. In the same size region, the more dispersive the particle size is, the more the net charges can be produced. In normal-distributed granular system, the magnitude of contact charge is determined mainly by the particle size distribution, size region, total particle number and the relative impact velocity.  相似文献   

5.
Contact electrification phenomena on phosphor particle surfaces   总被引:2,自引:0,他引:2  
Contact electrification phenomena are reviewed to understand phosphor powder behavior. The origin of contact electrification is described in terms of the acid–base concept for solid surfaces. Electric charges produced by contact electrification affect phosphor properties. Various examples related to contact electrification are shown: particle surface modification, dispersion in liquids, adhesion strength to a substrate, electrostatic coating, interaction between a phosphor and mercury in a fluorescent lamp, and electron emission ability in a fluorescent lamp.  相似文献   

6.
The mechanism of contact electrification between metals was studied using the first-principles method, taking the Ag-Fe contact as an example. Charge population, charge density difference, the orbitals and densities of states (DOS) were calculated to study the electronic properties of the contacting interfacial atoms. Based on the calculation, the amount of contact charge was obtained. The investigation revealed that the electrons near Fermi levels with higher energies transfer between the outermost orbitals (s orbitals for Ag and d orbitals for Fe). Meanwhile, polarized covalent bonds form between the d electrons in the deep energy states. These two effects together lead to an increase of charge magnitude at the interface. Also, the electrons responsible for electrification can be determined by their energies and orbitals.  相似文献   

7.
Lin-Feng Wang 《中国物理 B》2022,31(6):66202-066202
Contact electrification (CE) is a pretty common phenomenon, but still is poorly understood. The long-standing controversy over the mechanisms of CE related to polymers is particularly intense due to their complexity. In this paper, the CE between metals and polymers is systematically studied, which shows the evolution of surfaces is accompanied by variations of CE outputs. The variations of CE charge quantity are closely related to the creep and deformation of the polymer and metal surfaces. Then the relationship between CE and polymer structures is put forward, which is essentially determined by the electronegativity of elements and the functional groups in the polymers. The effects of load and contact frequency on the CE process and outputs are also investigated, indicating the increase of CE charge quantity with load and frequency. Material transfer from polymer to metal is observed during CE while electrons transfer from metal to polymer, both of which are believed to have an influence on each other. The findings advance our understanding of the mechanism of CE between metal and polymers, and provides insights into the performance of CE-based application in various conditions, which sheds light on the design and optimization of CE-based energy harvest and self-powered sensing devices.  相似文献   

8.
Verma  Mahendra K.  Kumar  Shishir 《Pramana》2004,63(3):553-561
In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters. The parameters calculated using field theory have been taken from recent papers by Verma [1,2]. We have carried out LES on 643 grid. These results match quite well with direct numerical simulations of 1283. We show that proper choice of parameter is necessary in LES.  相似文献   

9.
The dynamics of heavy particles suspended in turbulent flows is of fundamental importance for a wide range of questions in astrophysics, atmospheric physics, oceanography, and technology. Laboratory experiments and numerical simulations have demonstrated that heavy particles respond in intricate ways to turbulent fluctuations of the carrying fluid: non-interacting particles may cluster together and form spatial patterns even though the fluid is incompressible, and the relative speeds of nearby particles can fluctuate strongly. Both phenomena depend sensitively on the parameters of the system. This parameter dependence is difficult to model from first principles since turbulence plays an essential role. Laboratory experiments are also very difficult, precisely since they must refer to a turbulent environment. But in recent years it has become clear that important aspects of the dynamics of heavy particles in turbulence can be understood in terms of statistical models where the turbulent fluctuations are approximated by Gaussian random functions with appropriate correlation functions. In this review, we summarise how such statistical-model calculations have led to a detailed understanding of the factors that determine heavy-particle dynamics in turbulence. We concentrate on spatial clustering of heavy particles in turbulence. This is an important question because spatial clustering affects the collision rate between the particles and thus the long-term fate of the system.  相似文献   

10.
Many studies have been reported for contact electrification based on the electron transfer from donors to acceptors. However, the chemical structures of donors and acceptors have not been identified. Here we calculated the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels of model structures of mechano anions, mechano cations and mechano radicals which were produced by the heterogeneous and homogeneous scissions of covalent bonds comprising polymer main chain in vacuum at 77 K. We identified the donors are mechano anions(HOMO) and mechano radicals(HOMO), and the acceptors are mechano cations(LUMO) and mechano radicals(LUMO). The contact electrification is due to the electron transfer from the donors to the acceptors during contacting on the friction surface, and produces mosaic nano-scopic domains with opposite sign. The sign of the net charge of polymer was deduced from the number of paths of electron acceptance reaction. The relative sign of charge and position on the triboelectric series were deduced from their chemical structure.  相似文献   

11.
12.
Fully resolved simulations of homogeneous shear turbulence (HST) laden with sedimenting spherical particles of finite size have been performed to clarify the effects of gravity on the development of particle-laden turbulent shear flows. We consider turbulence in a horizontal flow subjected to vertical or horizontal shear. Numerical results show that the development of HST laden with finite-size particles are significantly altered by gravity. The effects of gravity lead to a slower increase in the Taylor-microscale Reynolds number, whose value is found to be well correlated with the average particle Reynolds number. The gravity also causes a slower increase in the turbulence kinetic energy (TKE) through the enhancement of energy dissipation. The change in the Reynolds shear stress (RSS) due to particles also significantly contributes to the relative change in TKE. In vertically sheared cases, RSS has high values between counter-rotating trailing vortices behind the particles, which causes a transient relative increase in TKE. In horizontally sheared cases, on the other hand, RSS is reduced in the wakes of particles, which contributes to a significant relative reduction in TKE.  相似文献   

13.
The effects of finite grid resolution on the statistics of small scales in direct numerical simulations of turbulent mixing of passive scalars are addressed in this paper. Simulations at up to 20483 grid points with grid spacing Δx varied from about 2 to 1/2 Batchelor scales (ηB) show that most conclusions on Schmidt number (Sc) dependence from prior work at less stringent resolution remain qualitatively correct, although simulations at resolution ΔxηB are preferred and will give adequate results for many important quantities including the scalar dissipation intermittency exponent and structure functions at moderately high orders. For Sc≥1, since ηB=ηSc−1/2 (where η is the Kolmogorov scale), the requirement ΔxηB is more stringent than the corresponding criterion Δxη for the velocity field, which is thus well resolved in simulations aimed at high Schmidt number mixing. A simple argument is given to help interpret the effects of Schmidt and Reynolds numbers on trends towards local isotropy and saturation of intermittency at high Schmidt number. The present results also provide evidence for a trend to isotropy at high Reynolds number with fixed Sc=1.0. This is a new observation apparently not detected in less well resolved simulations in the past, and will require further investigation in the future.  相似文献   

14.
Lattice Boltzmann simulation of solid particles suspended in fluid   总被引:2,自引:0,他引:2  
The lattice Boltzmann method, an alternative approach to solving a fluid flow system, is used to analyze the dynamics of particles suspended in fluid. The interaction rule between the fluid and the suspended particles is developed for real suspensions where the particle boundaries are treated as no-slip impermeable surfaces. This method correctly and accurately determines the dynamics of single particles and multi-particles suspended in the fluid. With this method, computational time scales linearly with the number of suspensions,N, a significant advantage over other computational techniques which solve the continuum mechanics equations, where the computational time scales asN 3. Also, this method solves the full momentum equations, including the inertia terms, and therefore is not limited to low particle Reynolds number.  相似文献   

15.
采用FLUENT软件分别对外加均匀横向磁场的等截面三维充分发展液态金属管流的层流模型和低雷诺数湍流Lam/Bremhost(LB)模型进行了数值模拟,分析了外加磁场对普通方管LB模型速度分布和压降的影响。比较在相同哈特曼数下,层流和湍流模型方管截面上速度分布和管道中MHD压降。其中,对电流的计算采用磁感应方程来求得。数值模拟结果证明了用低雷诺数LB湍流模型解决方管磁流体流动的可行性。通过层流模型和湍流模型的对比可知,层流模型有较短的入口长度,但管内流体的压降却很大;而湍流模型管内速度更加平均化,管内压降较小,但管内入口长度较长。  相似文献   

16.
《中国物理 B》2021,30(10):104101-104101
Charged photovoltaic glass produces an electrostatic field. The electrostatic field exerts an electrostatic force on dust particles, thus making more dust particles deposited on the glass. In this paper, the contact electrification between the deposited dust particles and the photovoltaic glass is studied. Meanwhile, the surface charge density model of the photovoltaic glass and the electrostatic force of charged particles are analyzed. The results show that with the increasing of the particle impact speed and the inclination angle of the photovoltaic panel, the charges on particles increase to different degrees.Under a given condition, the electrostatic forces acting on the charged particles at different positions above the glass plate form a bell-shaped distribution at a macro level, and present a maximum value in the center of the plate. As the distance between the particle and the charged glass decreases, the electrostatic force exerted on the particle increases significantly and fluctuates greatly. However, its mean value is still higher than the force caused by gravity and the adhesion force,reported by some studies. Therefore, we suggest that photovoltaic glass panels used in the severe wind-sand environment should be made of an anti-static transparent material, which can lessen the dust particles accumulated on the panels.  相似文献   

17.
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.  相似文献   

18.
《Surface Science Reports》2014,69(4):325-365
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.  相似文献   

19.
《Applied Acoustics》2008,69(4):358-366
The presence of turbulence in the atmosphere affects the interaction between an acoustic wave and the ground surface. The noise attenuation by the ground in the presence of atmospheric turbulence is smaller than in non-turbulent atmosphere.A simple engineering model of noise propagation above a flat ground surface, for stationary and moving point sources, has been proposed. The model takes into account the air absorption and ground effect in the presence of turbulence.As well as parameters for type of ground and air absorption, the model introduces two adjustable parameters which must be deduced from in situ measurements at two ranges or two heights. The model’s free parameters have been obtained as a function of the resultant sound speed gradient on the basis of the field measurements performed for a stationary noise source. Also, using field data for a vehicle moving at steady speeds up to 100 km/h, the model has been verified for a moving point source.  相似文献   

20.
The subject of this paper is the long distance propagation of train noise. The sound exposure level of train noise LAE was measured. To describe the results of measurements, a semi-analytical model was used. It takes into account the wave-front divergence, air absorption, ground effect, and the turbulence destroying the coherent nature of the ground effect. The model contains three adjustable parameters that must be estimated at the site. To verify the model, we performed measurements of LAE at the distance D = 450 m from the train track center. The difference between the calculated and measured mean values of LAE equals 1.3 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号