首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李蕾  张程宾 《物理学报》2018,67(17):176801-176801
建立了直流电场作用下协流式微流控装置中单乳液液滴乳化生成过程的非稳态理论模型,并开展了数值模拟研究,揭示了电场对液滴乳化生成动力学行为的调控机理,阐明了流场/电场参数对液滴乳化生成特性的影响规律.研究结果表明:沿流体流动方向施加静电场可在电物性参数不同的两相流体界面法线方向上产生指向内相流体的电场力,进而强化了内相流体界面的颈缩和断裂,提升了液滴生成速率和形变程度,减小了液滴生成尺寸;在同一毛细数下,随着电毛细数的增大,乳液乳化流型由每周期仅有单一液滴生成的滴式流型转变为每周期有一个主液滴并伴随有卫星液滴生成的滴式流型;随着毛细数和电毛细数的增大,黏性拖曳力以及电场力作用增强,使内相流体颈缩过程后期更容易形成细长型液线,从而有助于诱发液线上产生Rayleigh-Plateau不稳定现象,继而促进卫星液滴的形成.  相似文献   

2.
《Journal of Electrostatics》2006,64(3-4):234-246
Electrostatic spray (E-spray) coating is widely used for coating conductive substrates. The combination of a high-velocity shaping air, an imposed electric field and charged droplets, leads to higher transfer efficiency than conventional spray coating. In this paper, a mathematical model of droplet transport in E-spray is presented which enables simulating the coating deposition rate profile. A dilute spray assumption (no particle–particle interactions) allows modeling single-droplet trajectories resulting from a balance of electrostatic force, drag and inertia. Atomization of liquid droplets is not modeled explicitly—rather an empirical correlation is used for the mean droplet size while individual droplet sizes and starting locations are determined using random distributions. Strong coupling requires the electrostatic field and droplet trajectories be determined iteratively by successive substitution with relaxation. The influences of bell-cup voltage and atomization constant on the coating deposition rate profile, mass transfer efficiency and droplet trajectories are also shown. Using individually predicted droplet trajectories and impact locations, a static coating deposition rate profiles is determined. For the parametric values considered in this paper, the predicted spray is a cone hollow with no deposition in the center, a heavy ring near the center, and a tapering of thickness toward the outer edge.  相似文献   

3.
We report a phenomenological observation of electric-field-induced formation and manipulation of liquid ball on an outer wall of the pulled pipette by using the quartz tuning fork-based atomic force microscope (QTF-AFM). The dye molecule solution with excitation wavelength of 488 nm and detection efficiency of 95% is used to investigate the movement characteristics of liquid droplets when the electric field is applied. The ejected liquid solution forms a microscale liquid droplet at the apex of the pipette by the application of electric field, containing dye molecules, which climbs up along the negatively charged outer surface of the pipette due to the electro-osmosis effect. With positive or negative bias voltages, we manipulate a liquid ball to slide upward or downward, respectively. This field-induced transport of a liquid droplet may be useful to nano-biotechnology or droplet-based microfluidic technology, for example, noncontact delivery and manipulation of liquid solution in the form of separated droplets.  相似文献   

4.
Double-emulsion droplets may be assembled into highly concentric shells using a uniform AC electric field to induce dipole/dipole interactions. The resulting force centers the inner droplet with respect to the outer shell if the outer droplet has a higher dielectric constant than the ambient, suspending liquid. The dielectric constant of the inner droplet does not influence this condition. Applying an electric field >104 Vrms/m achieves centering of approximately 3–6 mm diameter droplets suspended in ~10 centipoise liquids within ~60 s. If the outer shell is electrically conductive, the effect depends strongly on frequency. In the case of the monomer-containing liquids requisite to forming foam shells for laser target fabrication, the electrical field frequency must be ~10 MHz or higher. Because of very stringent requirements imposed on the concentricity and sphericity of laser targets, electric field induced droplet distortion must be minimized. Consequently, the liquid constituents must be matched in density to ~0.1%.  相似文献   

5.
Electrospraying (electrohydrodynamic spraying) is a method of liquid atomization by means of electrical forces. In electrospraying, the liquid at the outlet of a nozzle is subjected to an electrical shear stress by maintaining the nozzle at high electric potential. The advantage of electrospraying is that droplets can be extremely small, in special cases down to nanometers, and the charge and size of the droplets can be controlled to some extent by electrical means, i.e., by adjusting the flow rate and voltage applied to the nozzle. Due to its properties, electrospraying is considered as an effective route to nanotechnology. The paper considers the latest achievements in micro- and nano-thin-film production, including self-assembled nanostructures, in solid nano-particle generation, and in the formation of micro- and nanocapsules.  相似文献   

6.
The behavior of a microdrop of dielectric liquid suspended in a magnetic fluid and exposed to the action of electric and magnetic fields is studied experimentally. With increasing electric field, the deformation of droplets into oblate ellipsoid, toroid and curved toroid was observed. At the further increase in the electric field, the bursting of droplets was also revealed. The electrorotation of deformed droplets was observed and investigated. The influence of an additional magnetic field on the droplet dynamics was studied. The main features of the droplet dynamics were interpreted and theoretically examined.  相似文献   

7.
8.
The process of fission of charged liquid droplets is an important stage of multiply charged ion formation in the electrospray ionization (ESI) process. ESI is currently the most powerful ionization method in the mass spectrometry of large molecules such as biopolymers. Fission plays a crucial role in the ion formation essentially in the range of nanosized droplets, since it determines the charge states of product ions. Usually the Rayleigh equation is used to determine critical conditions, at which the fission process takes place. This equation gives the value of the critical radius of the charged droplet as a function of its charge and specific surface energy. The Rayleigh equation does not give us the opportunity to determine charges and sizes of the fission fragments. In the present work we propose a mathematical model that describes the fission process of the charged liquid droplet in an external electrostatic field. The model is based on the quasi-equilibrium assumption that the most probable shape of the droplet corresponds to the minimum of the free energy of the system. The change in the internal kinetic energy and dissipative losses for the viscous liquid are also taken into account in the model.  相似文献   

9.
Analysis is presented of the effect on the instability of a droplet of viscous liquid induced by its self-charge of such physical factors as corona discharge initiated in its vicinity and self-sustaining due to photoionization, evaporation of the liquid, and field vaporization of the charge. It has been shown that droplets of micron and submicron size lose their excess charge primarily due to field vaporization.  相似文献   

10.
A planar phase Doppler system is used to measure submicron droplets generated by an electrospray. Measured drop dia-meters are correlated with the liquid properties and the condition for transition of the spray from the single-jet mode to the multi-jet mode is introduced. In another set of measurements using a standard phase Doppler system, combined size and velocity data are employed to deduce the drag force on the drops. In a situation where the drag force is balanced primarily by the electric force, the phase Doppler measurements allow to estimate the power-law relationship between the charge on a drop and its diameter and hence, many provide insights into the underlying atomization mechanisms.  相似文献   

11.
The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet.  相似文献   

12.
Measurements of droplet deformation during wall impingement were performed for ethanol droplets and water droplets with diameters ranging from 100 to 200 μm. The wall temperature is well above the Leidenfrost temperature of the droplet liquid. With monodisperse droplet streams and a special illumination technique, slow motion images of the phenomena can be obtained. Measurements with high temporal resolution below 1 μs are possible using a standard video camera. The experimental results are compared with numerical results, which were obtained by solving the three-dimensional Navier-Stokes equations for incompressible fluids including surface tension effects. The fluids are treated with the volume-of-fluid method and the free surface is modeled according to the continuum-surface-force model. Numerical and experimental results show good agreement.  相似文献   

13.
Polymer Dispersed Liquid Crystal (PDLC) films are prepared by the polymerization induced method of phase separation. Initial configurations of the director of liquid crystal droplets inside the films are found using a polarized microscope. The effect of an electric field on the alignment structure of droplets is studied. Two mechanisms of droplet orientation by the electric field are determined as smooth and spontaneous. The processes observed are compared with the results of electro-optical studies.  相似文献   

14.
The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.  相似文献   

15.
Flame is affected by an external electric field because it contains ions and electrons related to chemical reactions. On the other hand, the movement of ions and electrons affects the external electric field due to their charge. This paper reports the combustion experiments of ethanol droplets in vertical electric field with variable distance electrodes apparatus in order to discuss the change of the external electric field due to the existence of flame. From a one-dimensional steady-state analysis, if the electric field is changed spatially, its effect on combustion behavior is aligned with V2/L3 and not V/L, where V is the applied voltage between electrodes, and L is distance between the electrodes. The droplet is burned between the two horizontal parallel electrodes. The flame deformation and the electric current are characterized by various electrode distances, and respectively, applied voltages. The vertical electric field induces a body force downwards on the flame. The flame deforms downward in the electric field because the electric body force counters the natural buoyancy. The relation between the applied voltage and electrode distance is investigated when the flame becomes vertically symmetrical and the results show that the deformation is the function of V/L1.5. This indicates that the change in the electric field should be considered to discuss the effect of an external electric field on combustion behavior. The experimental results are rearranged using εV2/L3 where ε is electric permittivity of air because its unit is N/m3 and it considered to be the representative electric body force. Although its application is limited, qualitatively it can help to explain the experimental results of a droplet combustion. In addition, the degree of electron attachment to neutral molecules is discussed to interpret our experimental results.  相似文献   

16.
An experimental study on electro-spraying from small-scale combustors is carried out using liquid ethanol as fuel. Two systems of electro-spraying are employed in the present study; one is a nozzle system (without a ring electrode) and the other is a nozzle-ring system (with a ring electrode). The photos of electro-spraying at the cone-jet mode are taken by a digital camera. The voltage drop across the resistance in the loop is measured by a data acquisition instrument, and the atomization current is calculated according to Ohm's Law. The size and velocity of electro-spraying droplets are measured by a Phase Doppler Anemometer. A non-dimensional analysis on atomization current is completed to explain the electro-spraying phenomena of liquid at the stable cone-jet mode. The results show that, the lower atomization current and droplet velocity corresponds to smaller size of droplet. Based on the results of non-dimensional analysis, it is found that the dimensionless atomization current in both the nozzle system and nozzle-ring system obeys the scaling law as square root of the dimensionless flow rate. The charge density is of a −1.5 power dependence on droplet diameter. Both of the nozzle and the nozzle-ring systems show a good agreement with Rayleigh instability.  相似文献   

17.
A mathematical model of steady laminar flame propagation through a suspension of liquid droplets was proposed, and numerical calculations within the framework of this model were performed. The model is constructed based on one-dimensional differential equations of the theory of laminar flames in homogeneous gaseous mixtures in conjunction with the theory of droplet burning in uniform monodisperse suspensions. The chemical process was described using a multistage kinetic scheme. A comparison of model predictions with the available experimental data demonstrated satisfactory agreement.  相似文献   

18.
Nematic droplets suspended in the isotropic phase of the same substance were subjected to alternating electrical fields of varying frequency. To keep the system at a constant nematic/isotropic volume ratio with constant droplet size, we carefully kept the temperature in the isotropic/nematic coexistence region, which was broadened by adding small amounts of a non-mesogenic liquid. Whereas the nematic droplets remained spherical at low (in the order of 10 Hz) and high frequencies (in the order of 1 kHz), at intermediate frequencies we observed a marked flattening of the droplets in the plane perpendicular to the applied field. Droplet deformation occurred both in liquid crystals (LCs) with positive and negative dielectric anisotropy. The experimental data can be quantitatively modelled with a combination of the leaky dielectric model and screening of the applied electric field due to finite conductivity.  相似文献   

19.
Dynamics of multiphase flow under high voltage has attracted extensive research interests due to its wide industrial applications. In this paper, numerical solution of electro-hydrodynamic behavior and interface instability of double emulsion droplet is presented. Level set method and leaky dielectric model coupled with Navier-Stokes equation are used to solve the electro-hydrodynamic problem. The method is validated against the theoretical analysis and the simulation results of the other researchers. Double emulsion droplet with inner droplet (core) and outer droplet (shell) phases immersed in continuous phase is subjected to high electric field. Shell/continuous and core/shell interfaces of the droplet undergo prolate-oblate or oblate-prolate deformation depending on the extent of the penetration of electric potential and sense of charge distribution at the interfaces. The deformation of the shell deviates from theory at larger volume fraction of core for oblate-prolate case whereas it follows theory for prolate-oblate case. The interfaces showing oblate-prolate deformation split at the poles whereas, for prolate-oblate, they split away along the equator. The re-union of the interfaces under high electric field results with production of daughter droplet at the core. The large decrease in critical electric field for oblate-prolate case shows their less interface stability at larger volume fraction of core. When the core is eccentric, the electric field drives it towards the shell center or to the shell/continuous interface depending on electrical parameters. The study is beneficial in understanding the electro-hydrodynamic behavior of emulsion droplets and efficient design of related industrial processes.  相似文献   

20.
Numerical modelling of an electron gun in the space charge limited regime requires determining the current density distribution as well as the electric fields and electron trajectories. This is a rather complicated self-consistent problem, since the space charge influences the electric field, which in turn influences the electron trajectories. Previous simulations of magnetron electron guns using the BFCPIC and BFCRAY codes used a simple emission model (constant current density) that is approximately valid for thermionic emission. The code has been modified to include space charge limited emission. Several different ways of doing this are considered. One of the models considered uses Gauss’s law to force the electric field on the emitter to vanish; it was used in the original version of BFCPIC for the simulation of ion diodes. A second is based on the use of Child’s law (locally), which may be more appropriate for extension to fully electromagnetic particle-in-cell (PIC) codes. Calculations were performed with both models, and the results compared with each other and with experiments performed at FZK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号