首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Lab-scale, two-stage electrostatic precipitation system comprising of precharging stage, in which PM2.5 particles are electrically charged, and collection stage, in which the charged particles are removed from the flowing gas by electric field, was investigated in this paper. Two types of electrostatic particle prechargers were compared with respect to the collection efficiency of the system: (1) co-flow precharger, in which ionic current was generated co-currently with the gas conveying the particles, and (2) counter-flow precharger, in which ionic current was generated oppositely to the flowing gas. In each case, the electrodes of precharger were supplied with DC or AC high-voltage in order to compare the effect of discharge mode on the collection efficiency of two-stage electrostatic precipitator. The collection stage was formed by two parallel-plate electrodes connected to DC high voltage source. Plate electrodes without discharge points (spikes) are corona-free electrodes, which prevent the collection stage from electrical discharges, and reduce the probability of back discharge ignition. The back discharge decreases collection efficiency of conventional electrostatic precipitators.It was concluded that the co-flow electrode configuration of the precharger, supplied with DC high voltage, has the highest total number collection efficiency for PM2.5 particles, higher than 95% and the mass collection efficiency larger than 99%. The counter-flow precharger provided only about 90% number collection efficiency of two-stage electrostatic precipitator. It was also shown that by AC electrode excitation, the collection efficiency of the system is lower than for DC supply. The two-stage electrostatic precipitators allowed obtaining higher fractional collection efficiency for PM2.5 particles than other conventional systems and can be recommended as highly effective devices for gas cleaning in power plants or cement industry.  相似文献   

2.
A novel wet electrostatic precipitator (WESP) is designed for effective control of fine aerosol from humid gases. It operates on the principle of unipolar particle charging in the corona discharge and particle precipitation under the field of their own space charge. The new precipitator is characterized by high gas velocity in the ionizing stage. Tests were carried out for gas with (NH4)2SO4, HCl and (NH4)Cl aerosol at particle number concentration up to 5·107#/cm3 and mass concentration 10–1000 mg/Nm3. For test conditions one-field WESP ensures mass collection efficiency 90–97% and two-field electrostatic precipitator up to 99%.  相似文献   

3.
As a preliminary study for the collection of dust particles in an electrostatic precipitator, laser Doppler velocimetry has been used to measure the velocity of small dust particles charged in the high electric field of a model electrostatic precipitator. A differential optical system is adopted for the velocimeter. The period-measuring system is used to analyse Doppler beat signals and to obtain velocity data from them. By means of the laser Doppler velocimeter, the dynamic behaviour of the velocity and direction of moving dust particles is fully revealed as a function of the applied electric voltage in the entire collecting space of the model electrostatic precipitator, and is shown in vectorial flow diagrams of particle velocity.  相似文献   

4.
A numerical analysis on the electrostatic capture of airborne viruses and nanoparticles in a homemade particle concentrator without a unipolar charger using commercial CFD software (CFD-ACE+) was presented. We simulated the effects of inlet/outlet configurations and particle diameters on the collection efficiency of the particle concentrator, and the simulation was in good agreement with the experimental measurements. We investigated the effects of the electrode arrangement on the collection efficiency. We also discussed the maximum collection efficiency and the relationship between the electric field intensity, the positions of the simulated particles on the inlet surface, and the collection efficiency.  相似文献   

5.
The electrostatic precipitator (ESP) has been extensively used for collecting aerosol particles emitted from coal combustion, but its collection efficiency of PM2.5 (Particulate matter whose aerodynamic diameter is less than 2.5 μm) is relatively low due to insufficient particle charging. The positive pulsed ESP is considered to enhance particle charging and improve collection efficiency. A laboratory-scale pulsed ESP with wire-plate electrode configuration was established to investigate the particle charging and penetration efficiency under controlled operating conditions of different applied impulse peak voltages, impulse frequencies, dust loadings and residence times. The results show that most particles larger than 0.2 μm are negatively charged, while most particles smaller than 0.2 μm are positively charged. For a given operating condition, the particle penetration efficiency curve has the highest penetration efficiency for particles with a diameter near 0.2 μm, and there is always a negative correlation between the particle penetration efficiency and the average number of charges per particle. Under the same operating conditions, the particle penetration efficiency decreases with increasing impulse peak voltage and impulse frequency, but increases as the dust loading increases. The results imply that residence time of 4 s is optimum for particle charging and collection. PM2.5 number reduction exceeding 90% was achieved in our pulsed ESP.  相似文献   

6.
Electrospray was combined with an electrostatic precipitator (ESP) to enhance the collection efficiency of monodisperse nanometer-sized particles. The electrospray of deionized water produced water droplets with sizes ranging from 10 to 300 μm. The combination of the ESP with the electrospray enhanced collection of particles by 21–36% depending on the particle size. The combination of the ESP and the electrospray was also found to reduce the energy consumption of the ESP.  相似文献   

7.
In this paper, the technique of electrostatic precipitation was used to remove excess ions from a mixture with charged particles before collection on a filter in a Faraday cup electrometer of an electrical aerosol detector. The ion precipitator part of the detector was designed, constructed, and evaluated. An analytical model was developed to investigate ion and particle transports due to diffusion and space charge effects inside the ion precipitator. Experimental investigations were carried out for positive ions, the positively applied voltage at the wire electrode ranged from 10 to 150 V, ion flow rates ranged from 5 to 15 L/min, and the radial distance of the inlet was 0.15 and 14 mm at a fixed separation between the wire and outer electrodes. The calculation results showed that all charged particles of 10 nm in diameter could pass through the ion precipitator smoothly without precipitation at the outer electrode. For all ion flow rates, an increase in ion trap voltage produced an increase in ion collection efficiency of the precipitator. Experiments confirmed that the efficiency of the ion precipitator could increase to 99% at an ion trap voltage larger than 100 V for all ion flow rates.  相似文献   

8.
A laboratory electrostatic precipitator (ESP) together with a bipolar pre-charger has been designed for studying charge-induced agglomeration and fine particle collection. In terms of particle numbers, the ESP collection efficiency drops to its minimum of near 90% for particles with diameters of near 0.2 μm and 3 μm. For other particles, its value is around 94%–95%. By using the bipolar pre-charger, the grade efficiency can be significantly increased for all particle sizes due to the charge-induced particle agglomeration. The grade collection efficiency rises to about 95%–98% for all size particles.  相似文献   

9.
In this paper, the collection efficiency of a plane-to-plane dielectric barrier discharge electrostatic precipitator is investigated experimentally and theoretically using a new model. A parametric study is carried out to evaluate the effects of the applied voltage amplitude and frequency on submicron particles motion and collection within the size range from 0.18 to 0.7 μm. Results show that the amplitude of the particles oscillatory motion increases with the voltage and the particles diameter which increase their collection. The collection efficiency decreases at low frequencies because of the low charge of particles and at high frequencies because of particles fast oscillation.  相似文献   

10.
In this paper, a new electrostatic precipitator (ESP) with asymmetrical wire-to-cylinder configuration is investigated experimentally and numerically. The main objective is to evaluate the collection efficiency of high resistivity particles.The electrical measurements show that the corona discharge behavior is similar to that obtained in symmetrical wire-to-cylinder configuration. Results show that the collection efficiency can reach 95% in the case of negative corona discharge.In order to understand the particle trajectories inside the ESP, the experimental results are compared with numerical simulation by using a coupled model. Numerical results indicate that particles can be collected on the collecting electrode backside.  相似文献   

11.
An analysis of the electrostatic gas cleaning fundamental phenomenon shows an essential influence of discharge electrode construction on the gas cleaning process efficiency.In the physical model tests there were used rigid discharge electrodes with corona emitting elements of various geometries. Different constructions of discharge electrode were tested in the aspect of discharge current uniform distribution on collecting electrode surfaces. Measurements of discharge current distribution has been carried out for discharge electrodes with different spike shapes and in different electric field geometry. The research aim was to determine the optimal discharge electrode construction ensuring high collection efficiency of fine particles. Collection efficiency measurements of selected fly ash samples (from coal fired boilers) were carried out on a laboratory testing bench in a horizontal electrostatic precipitator model.  相似文献   

12.
A direct-current (DC) electric field was exerted in a bench-scale electrostatic precipitator (ESP) to induce the agglomeration of bipolar charged aerosol particles. The test aerosol particles were generated from water with an atomizer and their average diameter was 7.71 μm. A phase doppler anemometer (PDA) was used to measure the size distribution and the number concentration of the particles. Systematic experiments were conducted to investigate the agglomeration efficiency of the system. The percentage decrease in number of sub-micron sized particles was found to be about 10.7%.  相似文献   

13.
Pubic concerns related to particulate matter emissions from animal housing operations are increasing. The goal of this study was to custom develop a simple and low cost electrostatic precipitator (ESP) for poultry dust control. The performance of the improved electrostatic precipitator (iESP) to remove a test aerosol was evaluated under a series of operating voltages between ?60 kV and 60 kV. The mass and size distributions of the particles were measured by a cascade impactor. The overall dust removal efficiency ranged from 37% to 79% with the maximum efficiency obtained at ?30 kV. The iESP shows high removal efficiencies for particles less than 2.1 μm.  相似文献   

14.
The aim of this study is to highlight the re-entrainment phenomenon encountered with an electrostatic agglomerator having a fibrous collecting electrode and treating submicron particles. The idea is to propose a process to control the particle number emitted by automotive diesel engines. Rather than trying to directly measure agglomerates of diesel particles exiting the agglomerator, we propose working with a synthetic submicron aerosol dispersed in ambient filtered air as a representative exhaust gas. The study will contribute to build a numerical modeling of the behavior of particles in such a process. The particular point that will be treated here is the collected particle re-entrainment as micron-sized agglomerates. We propose a joint experimentation/modeling approach to approximate the re-entrained aerosol size distribution in controlled conditions. From the modeling point of view, a local approach which uses the method of the balance of moments on agglomerates provides the re-entrained particle size in the agglomerator, according to the filtration conditions. The experimental approach confirms the clearly micron-sized character of the re-entrained agglomerates. This is unambiguously shown by measuring a greater micron particle numerical concentration downstream from the agglomerator than upstream. We show that the fluorescein submicron particles use can greatly simplify the characterization of an electrostatic agglomerator by allowing the use of a commercial laser granulometer to measure the size and the number of the generated agglomerates.  相似文献   

15.
The purpose of this paper is to study the effect of the high-voltage power supply waveform and the presence of a dielectric barrier on the collection of submicron particles in a wire-to-cylinder electrostatic precipitator. The experiments are carried out on two reactors (with or without dielectric barrier on the surface of the cylindrical collector electrode) with the same active section and volume. The results show that the highest collection efficiency is obtained with the negative dc corona. At equivalent electric power consumption, the Dielectric Barrier Discharge (DBD) is as effective as the positive dc corona and the ac corona. The efficiency can reach 99% with both studied reactors, if the necessary power is provided.  相似文献   

16.
The biomass fired stoves have been used in medium and large scales applications from several years and are utilizing electrostatic precipitator technology. Biomass based technologies are considered as renewable energy source and less harmful to the environment. The combustion of biomass generates a high concentration of flue gas particulates. The most of the flue gas particulates in the exhaust gas can be filtered through an electrostatic precipitator. In this work, a computational fluid dynamic (CFD) model has been developed for analysing the trajectory of particulates in a small scale domestic stove using biomass material. It is considered that electrostatic precipitator is based on an approach where both charging and precipitation of particulates takes place within the same set of electrodes. The precipitator is mounted in a vertical chimney of diameter 180 mm containing a central high voltage corona source. The model is based on biomass combustion models utilising a Eulerian–Lagrangian reference. The developed CFD model demonstrates the efficiency of the removal of charged particulates of the flue gases and also the interaction of the electric field in a semi turbulent flow together with the combination of the ion wind. Also it includes the effects of space charge within the system. In the modelling, modifications have been made to the grounded cylindrical collector of electrostatic precipitation through a re-design to include a series of inclined baffle plates for improving the particulates' collection efficiency.  相似文献   

17.
A high-temperature electrostatic precipitator (ESP) presents a good solution for hot gas cleaning, which can remove fly ash from pyrolysis gas at temperatures higher than the tar dew point. In this paper, the characteristics of negative DC corona discharge in air and simulated coal pyrolysis gas were studied. The removal of coal pyrolysis furnace fly ash (ash A) was investigated and compared with that of coal-fired power plant fly ash (ash B) in ESP with a temperature ranging from 300?K to 900?K. The current density of simulated gas was higher than that of air under the same discharge voltage and at different temperatures. The simulated gas also had a higher spark voltage and a lower onset voltage compared with air. The fractional collection efficiency of ash A was lower for particles with diameters of larger than 0.1?µm at high temperature, compared with ash B. A lower collection efficiency in simulated gas was obtained for particles with diameters of less than 0.1?µm compared with air. The collection efficiency of submicron particles in simulated gas was usually higher than it in air, especially for particles with diameters of less than 0.04?µm. In simulated gas, the overall collection efficiency of ash A was obviously lower than that of ash B, especially at high temperature. From 300?K to 700?K, the collection efficiencies of both ash samples were as high as above 93%, but the collection efficiency of ash A in simulated gas decreased to 78.7% at 900?K.  相似文献   

18.
This study presents the results of investigations of a hybrid electrostatic filtration system (HEFS), which combines an electrostatic precipitator (ESP) and a fibrous filter installed downstream of the ESP. The particles escaping from the ESP carry large amount of charge and this can increase the filtration efficiency of the fibrous filter. The filtration characteristics, including the efficiency, pressure drop and ozone generation, were investigated experimentally. The influence of system parameters, including the filter type, applied voltage, and distance between the ESP and fibrous filter on the overall efficiency were also studied. The measured results show that utilizing the non-high-efficient fibrous filter to remove the charged particle could provide a much higher efficiency without adding the pressure drop due to the electrostatic force. If the efficiency was similar, the ozone generated by HEFS was much lower than that of the single ESP. The results proved that filter efficiency increased with a higher applied voltage and higher initial mechanical filtration efficiency. The distance between the filter and ESP had no influence on the system filtration efficiency. The efficiency of filter in HEFS supplied with the positive voltage was slightly lower than for the negative voltage. In addition, the mathematical model was utilized to model the air filter efficiency in HEFS. The modeled and measured results agreed reasonably. Overall conclusion is that the HEFS could operate at a high efficiency with the lower applied voltage, ozone generation and pressure drop.  相似文献   

19.
Over the past decade or so the health problems associated with the inhalation of sub micron particles from industrial processes has taken prominence and has lead to the stricter emission legislation, such as the US PM 2.5 approach. Generally most forms of control equipment readily handle and collect particles greater than 1 micron diameter, however, those less than 1 micron diameter are very much more difficult to collect.In the case of electrostatic precipitation, which involves both particle charging and migration under the influence of an electric field, the larger particles, generally greater than 1 micron are charged by collision with the ions and electrons present in the inter electrode area. It will be shown that the charge on these particles is proportional to the radius squared and its migration velocity proportional to the voltage squared, both reducing with particle size. The very small particles however, are charged by a diffusion processes and migrate under the influence of Brownian motion, which increases as the particle size decreases. The result of this is that a typical particle size/efficiency curve indicates a significant penetration window in the 0.8–0.2 micron diameter range, which coincides with the change from collision to diffusion charging of the particles.Because of this penetration window, should an existing precipitator operating under optimum electrical conditions, not comply with fine particle emission requirements, the conventional performance enhancement scenario, since the charging and precipitation operating conditions have been already optimised, would be to increase the precipitator's plate area, a very expensive solution. It will be shown, however, that the replacement of the conventional mains energisation system by an SMPS approach in an existing ESP will enhance the collection efficiency of particles, particularly in the penetration window, as a result of the increase in both operating field voltages and currents.The SMPS approach was applied to a 2 field ESP dealing predominately with sub micron fume, which the Client wished to enhance the performance to enable higher recycle rates, while still complying with his emission permitting. This was initially assessed using PALCPE? (Proactive Approach to Low-Cost Precipitator Enhancement), which indicated a significant reduction in the fine particle emissions was achievable by operation under SMPS Operation. An SMPS unit was subsequently fitted to the outlet field of this precipitator and the operating data will be examined in detail. With the outlet field under a mains rectification energisation system the overall emission was ~25 mg/Nm3, which after installation of the SMPS unit reduced to less than 15 mg/Nm3.  相似文献   

20.
The novel electrohydrodynamically-assisted electrostatic precipitator (EHD ESP) was developed to suppress particle reentrainment for collection of low resistive diesel particulates. The collection efficiency was compared between vertically and horizontally oriented electrodes of the EHD ESP using 400 cc diesel engine. The particle size dependent collection efficiency was evaluated for the particle size ranging in 20 to 5000 nm using a scanning mobility particle sizer (SMPS) and a particle counter (PC). Both horizontally and vertically oriented EHD ESP showed an excellent suppression of particle reentrainment. However, the horizontally oriented electrode EHD ESP showed significantly improved for the particle size of 300–500 nm in comparison with vertically oriented electrode EHD ESP, resulting in more than 90% collection efficiency for all particle size range. The EHD ESP has high potential especially for highly concentrated marine diesel engine emission control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号