首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of support (SiO2-Al2O3, Al2O3,MgO) of the Rh-Mo(S) sulfide catalysts on the synergy in hydrodesulfurization (HDS) of thiophene and hydrodenitrogenation (HDN) of pyridine was studied. The synergy in HDS was between 7–10 regardless of the kind of support used. The synergy in HDN varied from none over the MgO supported sample to about 3 over SiO2-Al2O3 supported catalyst, in accord with the positive effect of increasing support acidities. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The formation of hydrogen peroxide in bidistilled water under the influence of UV-C radiation from a DKB-9 low-pressure mercury lamp has been studied. The yield of hydrogen peroxide was (1 ± 0.2) × 10?7 mol (L s)?1. The wavelengths of radiation under the influence of which the formation of H2O2 is possible have been estimated. It has been assumed that the intermediate product of the reaction is the HO2./O2.-radical. To identify it, oxidation–reduction reactions in aqueous solutions containing Fe2+, Fe3+, and I? ions at pH values from 0.8 to 8.1 have been studied. The quantum yield of HO2. radicals in an acidic medium under the influence of radiation from the mercury lamp is 0.015 ± 0.005.  相似文献   

3.
Sensitive fluorescent probes for the determination of hydrogen peroxide and glucose were developed by immobilizing enzyme horseradish peroxidase (HRP) on Fe3O4/SiO2 magnetic core–shell nanoparticles in the presence of glutaraldehyde. Besides its excellent catalytic activity, the immobilized enzyme could be easily and completely recovered by a magnetic separation, and the recovered HRP-immobilized Fe3O4/SiO2 nanoparticles were able to be used repeatedly as catalysts without deactivation. The HRP-immobilized nanoparticles were able to activate hydrogen peroxide (H2O2), which oxidized non-fluorescent 3-(4-hydroxyphenyl)propionic acid to a fluorescent product with an emission maximum at 409 nm. Under optimized conditions, a linear calibration curve was obtained over the H2O2 concentrations ranging from 5.0 × 10−9 to 1.0 × 10−5 mol L−1, with a detection limit of 2.1 × 10−9 mol L−1. By simultaneously using glucose oxidase and HRP-immobilized Fe3O4/SiO2 nanoparticles, a sensitive and selective analytical method for the glucose detection was established. The fluorescence intensity of the product responded well linearly to glucose concentration in the range from 5.0 × 10−8 to 5.0 × 10−5 mol L−1 with a detection limit of 1.8 × 10−8 mol L−1. The proposed method was successfully applied for the determination of glucose in human serum sample.  相似文献   

4.
The nature and stability of surface species of CuCl2 supported on α-Al2O3, γ-Al2O3, and SiO2 were investigated by using X-ray diffraction techniques and reflectance spectroscopy. No specific chemical interaction of CuCl2 is observed on an inert α-Al2O3 support, as opposed to hydrated carriers as SiO2 and γ-Al2O3. On these supports the coordination sphere of Cu2+ consists of surface groups (OH? or O? at drying and activation, resp.), H2O and Cl?, with the H2O ligands decreasing in concentration in the process of impregnation, drying and calcination. γ-Al2O3 samples, calcined at 400°C, show γ-Cu2(OH)3Cl as opposed to CuAl2O4 at higher temperatures. The absence of Cu2(OH)3Cl on SiO2-supported samples is related to the acid-base characteristics of the carriers. The various supports can be arranged in the following order of stability of the complexes formed: γ-Al2O3 > SiO2 ? -Al2O3.  相似文献   

5.
《Analytical letters》2012,45(4):661-676
Abstract

A novel amperometric sensor of hydrogen peroxide was constructed. Hemoglobin (Hb) was successfully immobilized on nanometer‐sized SiO2, which was supported by chitosan. Chitosan was acted as dispersant. The determination of hydrogen peroxide was performed in the presence of an electron mediator hydroquinone. Hb immobilized on the SiO2/chitosan composite film displayed excellent electrocatalytical activity to the reduction of H2O2. The linear range of detection towards H2O2 was from 6.25×10?7 to 1.63×10?4mol/L with a detection limit of 1.8×10?7mol/L (S/N=3). The apparent Michaelis‐Menten constant (K app M) was found to be 0.75mmol/L.  相似文献   

6.
李庆远  季生福  胡金勇  蒋赛 《催化学报》2013,34(7):1462-1468
采用浸渍法制备了SiO2, γ-Al2O3, CaO和TiO2负载的Ni催化剂, 以及不同MgO含量的MgO-7.5%Ni/γ-Al2O3催化剂,利用X射线衍射和N2吸附-脱附技术表征了催化剂的结构,在固定床反应器上评价了它们在稻草水蒸气催化重整制合成气反应中的催化性能,考察了反应条件对催化剂性能的影响.结果表明, 以γ-Al2O3为载体时Ni催化剂活性最高,其中7.5%Ni/γ-Al2O3催化剂的H2收率可达1071.3ml/g,H2:CO的体积比为1.4:1;同时,MgO的添加进一步提高了该催化剂的性能,当MgO含量为1.0%时,H2收率可达1194.6ml/g,H2:CO体积比可达3.9:1.可见MgO的加入促进了Ni基催化剂上稻草水蒸气催化重整制合成气反应的进行,同时使得合成气中CO发生水-汽转换反应,从而大大提高了合成气中H2含量.  相似文献   

7.
The review is devoted to the use of high-level quantum-chemical calculations by the density functional method for the simulation of heterogeneous catalytic systems based on transition metals. The following problems are considered: (1) the development of methods for simulating metal particles supported on the surfaces of ionic and covalent oxides; (2) the calculation of the properties of individual transition metal atoms and small clusters adsorbed on the surfaces of MgO, α-Al2O3, γ-Al2O3, and various modifications of SiO2 and in the pores of zeolites; (3) the mechanisms of hydrogen activation and acrolein hydrogenation on the metallic and partially oxidized surface of silver; and (4) the mechanism of formation of carbon residues upon the decomposition of methanol on nanosized Pd particles.  相似文献   

8.
Hydroxylation of benzene by molecular oxygen (O2) occurs efficiently with 10‐methyl‐9,10‐dihydroacridine (AcrH2) as an NADH analogue in the presence of a catalytic amount of Fe(ClO4)3 or Fe(ClO4)2 with excess trifluoroacetic acid in a solvent mixture of benzene and acetonitrile (1:1 v/v) to produce phenol, 10‐methylacridinium ion and hydrogen peroxide (H2O2) at 298 K. The catalytic oxidation of benzene by O2 with AcrH2 in the presence of a catalytic amount of Fe(ClO4)3 is started by the formation of H2O2 from AcrH2, O2, and H+. Hydroperoxyl radical (HO2.) is produced from H2O2 with the redox pair of Fe3+/Fe2+ by a Fenton type reaction. The rate‐determining step in the initiation is the proton‐coupled electron transfer from Fe2+ to H2O2 to produce HO. and H2O. HO. abstracts hydrogen rapidly from H2O2 to produce HO2. and H2O. The Fe3+ produced was reduced back to Fe2+ by H2O2. HO2. reacts with benzene to produce the radical adduct, which abstracts hydrogen from AcrH2 to give the corresponding hydroperoxide, accompanied by generation of acridinyl radical (AcrH.) to constitute the radical chain reaction. Hydroperoxyl radical (HO2.), which was detected by using the spin trap method with EPR analysis, acts as a chain carrier for the two radical chain pathways: one is the benzene hydroxylation with O2 and the second is oxidation of an NADH analogue with O2 to produce H2O2.  相似文献   

9.
The Ga2O3-Al2O3-ZnO (GAZ) multi-component spinel powders with incorporated Cu2+, Co2+, Fe2+, Ni2+, Mn2+ and In2+ metal cations were synthesized by co-precipitation method from a mixed solution of nitrate salts. Spinel crystal structure of each composition was confirmed by XRD measurements. The multi-component oxide powders were tested in the reduction of nitrogen oxide (NO) under lean conditions. Among the catalysts tested, In2O3-containing GAZ with a pure spinel phase structure showed promising catalytic activity in the NO reduction in the presence of 10% H2O vapor. In addition, the effect of H2O vapor and SO2 on the selective reduction of NO over In2O3-GAZ/cordierite and In2O3-GAZ/metal honeycombs catalysts has been investigated.  相似文献   

10.
《Electroanalysis》2017,29(3):765-772
Stable magnetic nanocomposite of gold nanoparticles (Au‐NPs) decorating Fe3O4 core was successfully synthesized by the linker of Boc‐L‐cysteine. Transmission electron microscope (TEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammograms (CV) were performed to characterize the as‐prepared Fe3O4@Au‐Nps. The results indicated that Au‐Nps dispersed homogeneously around Fe3O4 with the ratio of Au to Fe3O4 nanoparticles as 5–10/1 and the apparent electrochemical area as 0.121 cm2. After self‐assembly of hemoglobin (Hb) on Fe3O4@Au‐Nps by electrostatic interaction, a hydrogen peroxide biosensor was developed. The Fe3O4@Au‐Nps/Hb modified GCE exhibited fast direct electron transfer between heme center and electrode surface with the heterogeneous electron transfer rate constant (Ks ) of 3.35 s−1. Importantly, it showed excellent electrocatalytic activity towards hydrogen peroxide reduction with low detection limit of 0.133 μM (S /D =3) and high sensitivity of 0.163 μA μM−1, respectively. At the concentration evaluated, the interfering species of glucose, dopamine, uric acid and ascorbic acid did not affect the determination of hydrogen peroxide. These results demonstrated that the introduction of Au‐Nps on Fe3O4 not only stabilized the immobilized enzyme but also provided large surface area, fast electron transfer and excellent biocompatibility. This facile nanoassembly protocol can be extended to immobilize various enzymes, proteins and biomolecules to develop robust biosensors.  相似文献   

11.
A novel Prussian blue (PB)‐Fe3O4 composite has been prepared for the first time by self‐template method using PB as the precursor. According to this method, Fe3O4 nanoparticles distributed uniformly on the surface of PB cube. The feed ratio of sodium acetate to PB has been proved to be a key factor for magnetic properties and electro‐catalysis properties of the composite. Under the experimental conditions, the saturation magnetization value (Ms) of PB‐Fe3O4–2 composite was 22 emug?1, while the Ms value of other samples reduced. The composites also showed a good peroxidase‐like activity for the oxidation of substrate 3,3,5,5‐tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic reduction of hydrogen peroxide capacity was PB‐Fe3O4–1> PB‐Fe3O4–2> PB‐Fe3O4–3> PB‐Fe3O4–0, which confirmed the Fe(II) centres in PB surface and Fe3O4 nanoparticles had synergistic effect on catalytic reduction of hydrogen peroxide.  相似文献   

12.
We prepared Pd catalysts supported on various metal oxides, viz. γ-Al2O3, α-Al2O3, SiO2–Al2O3, SiO2, CeO2 and TiO2 by an incipient wetness method and applied them to propane combustion. Several techniques: N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) were employed to characterize the catalysts. Pd/SiO2–Al2O3 showed the least catalytic activity at high temperatures among Pd catalysts supported on irreducible metal oxides, viz. SiO2, Al2O3 and SiO2–Al2O3. Pd/γ-Al2O3 was much superior for this reaction to Pd/α-Al2O3. The Pd catalyst supported on reducible metal oxides (CeO2 and TiO2) with a less specific surface area showed the higher catalytic activity compared with that supported on reducible metal oxides with a higher specific surface area, even though the former had a less Pd dispersion than the latter. In the case of Pd/SiO2–Al2O3, the initially reduced Pd catalyst was superior to the fully oxidized one. The oxidation of metallic Pd occurred in the presence of O2 with increasing reaction temperature, which resulted in the change in the catalytic activity.  相似文献   

13.
以Fe(NO3)3·9H2O和正硅酸乙酯(TEOS)为原料, 通过溶胶-凝胶法和辅助模板法分别制备了纳米α-Fe2O3和SiO2, 并对所合成样品进行了粉末X射线衍射(XRD)和BET表征. 使用自动电位滴定仪测定了α-Fe2O3/SiO2纳米颗粒混合体系的表面酸碱性质. 研究了在不同pH下α-Fe2O3/SiO2混合体系对Cu2+、Pb2+、Zn2+离子的吸附行为. 基于上述实验数据, 用WinSGW软件计算了α-Fe2O3/SiO2混合体系表面酸碱配位常数, 并得出结论: α-Fe2O3/SiO2混合体系表面反应为单一脱质子反应≡XOH ⇔ ≡XO-+ H+(lg K = -8.19±0.15), 明显区别于同时具有加质子和脱质子反应的α-Fe2O3/SiO2/γ-Al2O3, α-Fe2O3/γ-Al2O3和SiO2/γ-Al2O3等纳米颗粒混合体系. 在此基础上拟合得到α-Fe2O3/SiO2混合体系吸附重金属离子Cu2+、Pb2+、Zn2+的表面络合反应平衡常数分别为:
≡XOH + M2+ ⇔ ≡XOM++ H+ [lg K = -3.1, -3.6, -3.8 (M = Cu, Pb, Zn)].
≡XOH+M2++H2O ⇔≡XOMOH+2H+[lg K = -8.8, -8.0, -10.5 (M = Cu, Pb, Zn)]  相似文献   

14.
Piezo-catalytic self-Fenton (PSF) system has been emerging as a promising technique for wastewater treatment, while the competing O2 reductive hydrogen peroxide (H2O2) production and FeIII reduction seriously limited the reaction kinetics. Here, we develop a two-electron water oxidative H2O2 production (WOR−H2O2) coupled with FeIII reduction over a FeIII/BiOIO3 piezo-catalyst for highly efficient PSF. It is found that the presence of FeIII can simultaneously initiate the WOR−H2O2 and reduction of FeIII to FeII, thereby enabling a rapid reaction kinetics towards subsequent Fenton reaction of H2O2/FeII. The FeIII initiating PSF system offers exceptional self-recyclable degradation of pollutants with a degradation rate constant for sulfamethoxazole (SMZ) over 3.5 times as that of the classic FeII-PSF system. This study offers a new perspective for constructing efficient PSF systems and shatters the preconceived notion of FeIII in the Fenton reaction.  相似文献   

15.
The catalytic hydrogenation of CO was studied over Mn- and/or Fe-promoted Rh/γ-Al2O3 catalysts. The catalysts were characterized by means of XRD, BET, H2-TPR·H2-TPD, XPS and DRIFTS. CO hydrogenation results showed that the doubly Mn- and Fe-promoted Rh/γ-Al2O3 catalysts exhibited superior catalytic activity and better ethanol selectivity. The DRIFTS results showed that Mn promoter stabilized the adsorbed CO on Rh+ and Fe stabilized adsorbed CO on Rh+ and Rh0, especially Rh0. The fact that doubly Mn- and Fe-promoted Rh/γ-Al2O3 owned more (Rhx0–Rhy+)–O–Fe3+·(Fe2+) active species was proposed to be a crucial factor accounting for its higher ethanol selectivity.  相似文献   

16.
A storage and emission functional material of Ca24Al28O644+·(Cl-)3.80(O2-)0.10(C12A7-Cl-), was prepared by the solid-state reactions of CaCO3, γ-Al2O3, and CaCl2 in Cl2/Ar mixture atmosphere. The anionic species stored in the C12A7-Cl- material were dominated by Cl-, about (2.21±0.24)×1021 cm-3, accompanied by a small amount of O2-, O-,, and O2-, measured via ion chromatography, electron paramagnetic resonance, and raman spectra measurements. These results also corroborate identification of time-of-flight mass spectroscopy—the anionic species emitted from the C12A7-Cl- surface were dominated by the Cl- (about 90%) together with a small amount of O-and electrons. The structure and morphological alterations of the material were investigated via X-ray diffraction and field emission scanning electron microscope, respectively.  相似文献   

17.
The adsorption of oligo(sebacoyl peroxide) on Aerosil and MgO and benzoyl peroxide on Fe2O3, Cr2O3, and V2O5 has been studied. It has been established that peroxide adsorption on the considered adsorbents is described by the Langmuir equation. Benzoyl-peroxide adsorption increases in the series Fe2O3 < Cr2O3 < V2O5. The process of thermal decomposition of peroxides in the presence of the listed adsorbents has been studied. The overall reaction of peroxide decomposition comprises two components, i.e., the decomposition processes occurring in a solution and on an adsorbent surface. Kinetic and activation parameters of the thermal-decomposition reactions in the solutions and on the surfaces have been determined.  相似文献   

18.
A study of inorganic interferences with the 2,4-xylenol spectrophotometric method for nitrate and their elimination is reported. Fifty-three substances do not interfere with the original method. Nitrite interferes somewhat by producing a faint yellow color. Certain reducing agents (Fe2+, S2-, S2O32-, and SCN-) cause low results by reducing the nitrate in the strong sulfuric acid solution, while some oxidizing agents (Mn7+, Cr6+, V5+, and ClO3-) cause low results by inactivating or destroying the 2,4-xylenol. Persulfate and small amounts of H2O2 produce a slight deepening of the color; larger amounts of H2O2; cause low results, as do Cl-, Br-, I-, and metals. The recommended maximum permissible limits (mg per 10-ml aliquot) for the original method are NO2--N, Fe2+, S2-, SCN-, V5+, ClO3-, Cl-, I-, 0.2; Mn7+, Cr6+, S2O82-, 5; H2O2, 0.02; S2O32-, Br-, 0.1; metals, none. Procedures for the elimination of most of the interferences are described. Nitrite is destroyed with sulfamic acid. The interferences of reductants (Fe2+, S2-, S2O32-, and SCN-) and oxidants (Mn7+ and Cr6+) are eliminated with hydrogen peroxide, the excess of which (and S2O82-) is destroyed by boiling in the presence of Fe3+. The interference of Cl-, Br-, and I- is eliminated by precipitation with silver sulfate. An alternative to the sulfamic acid procedure is to oxidize nitrite to nitrate with peroxide and deduct NO2--N from the total NO3--N. After elimination of interferences, a 10-ml aliquot of sample solution is treated with 17.0 ml of sulfuric acid and 2,4-xylenol, the 6-nitro-2,4-xylenol is steam-distilled into an ammonia—water—isopropanol mixture, and the yellow color is measured.  相似文献   

19.
In this study we show that nanoparticles of various ferric oxides (hematite, maghemite, amorphous Fe2O3, β‐Fe2O3 and ferrihydrite) incorporated into carbon paste exhibit electro‐catalytic properties towards hydrogen peroxide reduction. The modified paste electrode performances were evaluated and compared with those obtained with Prussian Blue‐modified carbon paste electrode, which represents an excellent chemical mediator towards the H2O2 redox reaction (as widely described in literature). The best catalytic activity was found for carbon paste modified by amorphous ferric oxide with 2–4 nm particle size, which was further tested for possible application as hydrogen peroxide sensor. At pH 7, the limit of detection was 2×10?5 M H2O2 (S/N=3), the calibration curves were linear upto 8.5 mM H2O2 (R2=0.998), the measurement reproducibility (RSD=97%, n=4), the interelectrode reproducibility (RSD=16%, nelectrodes=5) and <3 s response time.  相似文献   

20.
The authors have reviewed the salient features of the thermal behavior of the following systems:
  1. Single oxide systems: (i) Cr2O3, (ii) Fe2O3, (iii) Al2O3, (iv) MnO2, (v) ZrO2, (vi) NiO, (vii) ZnO, (viii) TiO2, (ix) SiO2, (x) ThO2.
  2. Binary oxide systems: (i) Cr2O3-Al2O3, (ii) Cr2O3-Fe2O3, (iii) Cr2O3-ZnO, (iv) Al2O3-SiO2, (v) Al2O3-Fe2O3, (vi) MnO-Cr2O3, (vii) Cu-Al2O3, (viii) ZrO2-Cr2O3, (ix) NiO-Cr2O3, (x) ZrO2-NiO, (xi) ThO2-Al2O3.
  3. Ternary oxide systems: (i) NiO-Cr2O3-ZrO2, (ii) Fe2O3-Cr2O3-Al2O3.
  4. Vanadates: (i) tin vanadate, (ii) copper vanadate, (iii) lead vanadate, (iv) cobalt vanadate and (v) silver vanadate.
Excellent correlations have been obtained in most of the systems between the thermal characteristics of the solids, as revealed by DTA, and their specific surface areas and catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号