首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat capacity of the layer compounds tetrachlorobis (n-propylammonium) manganese II and tetrachlorobis (n-propylammonium) cadmium II, (CH3CH2CH2NH3)2MnCl4 and (CH3CH2CH2NH3)2CdCl4 respectively, has been measured over the temperature range 10 K ?T ? 300 K.Two known structural phase transitions were observed for the Mn compound in this temperature region: at T = 112.8 ± 0.1 K (ΔHt= 586 ± 2 J mol?1; ΔSt = 5.47 ± 0.02 J K?1mol?1) and at T =164.3 ± (ΔHt = 496 ± 7 J mol?1; ΔSt =3.29 ± 0.05 J K?1mol?1). The lower transition is known to be from a monoclinic structure to a tetragonal structure, while the upper is from the tetragonal phase to an orthorhombic one. From comparison with the results for the corresponding methyl Mn compound it is deduced that the lower transition primarily involves changes in H-bonding while the upper transition involves motion in the propyl chain.A new structural phase transition was observed in the Cd compound at T= 105.5 ± 0.1 K (ΔHt= 1472.3 ± 0.1 J mol?1; ΔSt = 13.956 ± 0.001 J K?1mol?1), in addition to two transitions that have been observed previously by other techniques. The higher of these transitions(T = 178.7 ± 0.3 K; ΔHt = 982 ± 4 J mol?1 ΔSt = 6.16 ± 0.02 J K? mol?1) is known to be between two orthorhombic structures, while the structural changes at the lower transition (T= 156.8 ± 0.2 K; ΔHt = 598 ± 5 J mol?1, ΔSt = 3.85 ± 0.03 J K?1 mol?1) and at the new transition are not known. It is proposed that these two transitions correspond respectively to the tetragonal to orthorhombic and monoclinic to tetragonal transitions in the propyl Mn compounds.In addition to the structural phase transitions (CH3CH2CH2NH3)2MnCl4 magnetically orders at t? 130 K. The magnetic contribution to the heat capacity is deduced from the heat capacity of the corresponding diamagnetic Cd compound and is of the form expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

2.
In a high statistics experiment a large dσ/dt′ slope of (23.7 ± 3.2) GeV?2 is obtained in the forward direction. The natural parity exchange cross-section shows a dip at t′ ≈ 0.2 GeV2 and peak at ≈ 0.6 GeV2. The ?o is separated from the S-wave background and we obtain ?00F ≈ 0.94, at t′ = 0.  相似文献   

3.
The vibrational Raman spectrum of 16O2 has been recorded with high resolution (0.05 cm?1 for the Q branch). The expansion of the Hamiltonian as a sum of irreducible tensors of the O(3) group allowed us to obtain easily the expressions for the energy levels, taking into account the off-diagonal matrix elements. From the analysis of the spectrum the excited state constants have been calculated; in particular the rotational constants obtained are: B1 = 1.421884 ± 0.000013 cm?1 and D1 = (?4.864 ± 0.014)10?6 cm?1.  相似文献   

4.
The reactions ATe(p, t)A?2Te have been studied with even-A targets using 51.9 MeV protons. Three or more strongly excited triton peaks were observed in the spectra of the A-2Te nuclei at energies of ≈ 2–3 MeV excitation. Angular distributions are analyzed using DWBA theory. The lowest octupole (3?1) states of five Te isotopes are strongly excited. The lowest 3? state in 120Te is established at 2.09 ±0.02 MeV. The systematics of excitation energies and cross sections for the lowest 5? and 7? states are interpreted by a quasiparticle model.  相似文献   

5.
The microwave spectra of 2-fluorophenol and its deuterated species have been observed and analyzed in the frequency ranges 12.5–18.0 GHz (KU band) and 21.5–26.0 GHz (K band) in the ground vibrational state at room temperature. For the normal species, the radio frequency-microwave double resonance spectrum has been recorded in the frequency range 30.0–38.0 GHz. Three rotational and five quartic centrifugal distortion constants for the normal species, A? = 3337.86 ± 0.02, B? = 2231.92 ± 0.01, C? = 1337.52 ± 0.01, dJ = (3.5 ± 2.9) × 10?4, dJK = (?4.9 ± 1.5) × 10?3, dK = (?3.2 ± 1.0) × 10?3, dWJ = (?2.0 ± 1.0) × 10?7, dWK = (2.6 ± 0.8) × 10?6 (in MHz), and three rotational constants for the deuterated species, A? = 3324.70 ± 0.03, B? = 2177.95 ± 0.03, C? = 1315.96 ± 0.03 (in MHz), have been obtained. Consideration of the rs coordinate of the hydroxyl hydrogen atom leads to the assignment of the spectra to the cis conformer of the molecule. An r0 structure for the cis conformer has been proposed. The nonbonded OH ? F distance is lower by about 0.3 Å than the sum of the van der Waals radii.  相似文献   

6.
The ν2 + ν3 band of 14N16O2 has been recorded with resolution of 0.028 cm?1. Ground state and upper state rotational constants have been obtained. The band center obtained, ν0 = 2355.1517 ± 0.0011 cm?1 (error cited is 3σ), has been combined with the band centers recently determined for ν3 and ν2 to calculate X23 = ?11.348 ± 0.020 cm?1 where the uncertainty cited is based on reasonable estimates of the absolute frequency error.  相似文献   

7.
Heat capacities of [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] were measured between 135 and 375 K. A heat capacity anomaly due to the spin-transition from low-spin 1A1 to high-spin π2 electronic ground state was found at 176·29 K for the SCN-compound and at 231·26 K for the SeCN-compound, respectively. Enthalpy and entropy of transition were determined to be ΔH = 8·60 ± 0·14 kJ mol?1 and ΔS = 48·78 ± 0·71 J K?1 mol?1 for the SCN-compound and ΔH = 11·60 ± 0·44 kJ mol?1 and ΔS = 51·22 ± 2·33 J K?1 mol?1 for the SeCN-compound. To account for much larger value of ΔS compared with the magnetic contribution, we suggest that there is significant coupling between electronic state and phonon system. We also present a phenomenological theory based on heterophase fluctuation. Gross aspects of magnetic, spectroscopic, and thermal behaviors were satisfactorily accounted for by this model. To examine closely the transition process, infrared spectra were recorded as a function of temperature in the range 4000 ? 30 cm?1. The spectra revealed clearly the coexistence of the 1A1, and the 5T2 ground states around Tc.  相似文献   

8.
The dielectric, optical and non-linear optical properties of Ba6Ti2Nb8O30 single crystals were examined from room temperature up to the Curie temperature of 245°C. The spontaneous polarization at room temperature was estimated as 0·22±0·01 C/m2. The linear electrooptic constants were measured as r33T=(1·17±0·02)×10?10 and r13T=(0·42±0·01)×10?10 m/V. The non-linear optical coefficients were d33=(15·1±2·0)×10?12 and d31=(11·0±2·0)×10?12 m/V, which are comparable to those of Ba4Na2Nb10O30. Temperature dependences of δ33 and δ31 (Miller's δ) were found to be proportional to that of Ps.  相似文献   

9.
A high precision wavenumber calibration has been achieved for the spectrum of N2O at 4.5 μm. The values of the wavenumbers are reported for the (00°1-00°0) and for the (0111-0110) transitions. A new set of molecular constants is given for the upper and lower levels of these two transitions. In particular, the value of the H constant for the ground state (?2.02 ± 0.4) × 10?13 cm?1 determined in this work is significantly different from previous results.  相似文献   

10.
Mössbauer absorption spectra were obtained for the 21·6 ke V transition of 151Eu in EuH2 at various temperatures and for the 84·3 keV transition of 170Yb in YbH2 at 4·1°K. The isomer shift of EuH2 relative to Eu3+: Sm2O3 is ? 12·1 ± 0·3 mm. sec?1, and the magnetic hyperfine field equals ? 305 ± 5 kOe at saturation. The Curie temperature is found to be 16·2 ± 0·05°K, and the critical parameters of the transition are D = 1·17 ± 0·02 and β = 0·35 ± 0·01. The magnetic field is perpendicular to the principal axis of the electric field gradient and the values of the quadrupole hyperfine interaction e2qQ0(3 cos2 θ ? 1)/8 is ? 28 ± 4 Mc . sec?1. A large increase of the resonance area (21%) occurs at the transitio to the ferromagnetic state. The isomer shift of YbH2 relative to Yb: TmAl2 is ?0·11 ± 0·01 mm . sec?1. The value of the quadrupole coupling constant e2qQc/4is ? 91·5 ± 2 Mc . sec?1 and the asymmetry parameter of the electric field gradient equals 0·89 ± 0·05. The data for EuH2 and YbH2 is shown to be consistent with the hydridic model for the rare earth hydrides.  相似文献   

11.
We report the theoretical interpretation of the magnetization and the magnetocrystalline anisotropy of ferromagnetic DyAl2 single crystals between 4.2 and 60 K and magnetic fields up to 15 T. Good agreement between theory and experiment is obtained by using three temperature independent parameters: the two crystal field parameters B4 = (?0.50 ± 0.05) × 10?4 meV, B6 = ? (0.51 ± 0.05) × 10?6 meV and the Curie temperature Tc = (62 ± 2) K.  相似文献   

12.
The magnetic hyperfine interactions of the impurity Sb5+ in Cr2O3 have been examined by the Mössbauer effect of 121Sb.The magnetic field on the nucleus of 121Sb5+ (Cr2O3) measured at 77° K, H(0) = 170 ± 15 koe.The comparison of the results obtained for the impurity 121Sb5+ with those for the 119Sn4+ ions, occuring in the same matrix, suggests the preponderant effect of the decoupling of the electron spins of 5s valency on the values of the internal fields observed for those ions.  相似文献   

13.
Hall effect and electrical conductivity have been investigated between 77 K and 300 K and the magnetoresistance at 4.2 K for a number of (SN)x films deposited at substrate temperatures between — 10 and 50°C. The small magnitude of the Hall mobility (? 1 cm2 Vsec?1 at 300 K) and its activated temperature dependence are interpreted in terms of a heterogenous model for (SN)x films with thin depletion layers separating highly conductive islands. The hole concentration in these islands (p ≈ 1021 cm?3, the microscopic mobility (μ ≈ 500 cm2 Vsec?1 at 4.2 K) and the temperatures dependence of μ are found to be close to values for (SN)x crystals.  相似文献   

14.
We have investigated FeMo2S4 by transmission Mössbauer spectroscopy on the 57Fe nucleus between 4.2 and 1037 K, using both powdered and single crystal samples.The temperature dependences of the isomer shift and the quadrupole splitting indicate the existence of ferrous ions with well localized 3d electrons. The two different crystallographic Fe sites cannot be separated over the experimental temperature range. The local symmetry of the iron site is lower than axial (η ~ 0.47) and the crystal field splittings Δ1 and Δ2 of the Fe2+ ? T2g Orbitals, estimated by the Ingalls' method, are close to 250 and 900 cm?1.The hyperfine field makes an angle of 14° with the normal on the plane (a, b), deviating a little from the direction of the magnetic moments determined to be perpendicular to (a, b) by neutron diffraction study.At higher temperatures, and more particularly near TN, a line broadening is observed, and the spectra have to be fitted by a hyperfine field distribution. The broadening comes from the presence of about 7% “abnormal” Fe-sites observed in the paramagnetic spectra, and whose origin is discussed.The Néel temperature was determined to be 112 ± 1 K for the powdered sample and 106 ± l K for the single crystal.  相似文献   

15.
Thermoelectric power using reversible silver electrodes and electrical conductivity on the compressed pellets of (Me4N)2Ag13I15, and (Et4N)2Ag13I15 have been measured between room temperature and below 160°C. The results of θ can be expressed by the equations:?θ = 0.115 (103/T)+0.2905VK?1 and ?θ = 0.150 (103/T) + 0.305mV K?1; and those of conductivity by the equations; σ = 28.7 exp (?0.17eV/kT) ohm?1cm?1 and σ = 216.6 exp (?0.24eVkT) ohm?1cm?1; respectively for Me- and Et-electrolytes. The results are discussed and compared with those of previous authors.  相似文献   

16.
Diode laser measurements of the ν10 + ν11 (ltot = ±2) perpendicular band of cyclopropane have led to the assignments of roughly 600 lines in the 1880–1920-cm?1 region. Most of the spectra were recorded and stored in digital form using a rapid-scan mode of operating the laser. These spectra were calibrated, with the aid of a computer, by reference to the R lines of the ν1 + ν2 band of N2O. The ground state constants we obtained are (in cm?1) B = 0.670240 ± 2.4 × 10?5, DJ = (1.090 ± 0.054) × 10?6, DJK = (?1.29 ± 0.19) × 10?6, DK = (0.2 ± 1.1) × 10?6. The excited state levels are perturbed at large J values, presumably by Coriolis couplings between the active E′(ltot = ±2) and the inactive A′(ltot = 0) states. Effective values for the excited state constants were obtained by considering only the J < 15 levels. The A1-A2 splittings in the K′ = 1 excited states were observed to vary as qeffJ(J + 1), with qeff = (2.17 ± 0.17) × 10?4 cm?1.  相似文献   

17.
We have measured the effect of varying the mobile ion concentration on the sodium ion conductivity in the Hf-Nasicon system, Na1+xHf2SixP3-xO12, for 1.4 ? x ? 2.8. The conductivity is greatest for Na3.2Hf2Si2.2 P0.8O12: σ25°C = 2.3 × 10?3 (ω cm)?1, and σ250°C = 1.7 × 10?1 (ω cm)?1. These values are approximately 50% greater and worse, respectively, than the values reported for the best Zr-Nasicon. We have characterized the variation of lattice parameters with composition and found the behavior to be similar to that of Zr-Nasicon. A small distortion from rhombohedral to monoclinic symmetry occurs for compositions 1.8 ? x ? 2.2.  相似文献   

18.
The heat capacity of SnCl2·2H2O single crystal was measured in the close vicinity of the phase transition temperature, Tc = 217.994 ± 0.01 K. Its anomalous part ΔC could be expressed as ΔC = A± ⊥ (T ? Tc)/Tc-α±, where α+ = 0.492 ± 0.02, α- = 0.492 ± 0.02, A+ = 1.148 JK?mol?, and A- = 1.155 JK?mol?. A quasi-isothermal absorption of the enthalpy amounting to 34 J mol? was observed at Tc.  相似文献   

19.
Using Mößbauer effect measurements in the temperature range between 3 °K and 310 °K the magnetic fields at the nucleus in iron-stilbene, FeCl2·H2O and FeCl3 are determined to beH T=0=(250±10) kOe, (252±18) kOe and (468±10) kOe; a Néel-temperature ofT N=(23±1) °K is measured for iron-stilbene. The electric quadrupole splittings atT=0 °K for iron-stilbene and FeCl2 ·H 2 O, ΔE=(+2.52±0.02) mm/sec and (+2.50±0.05) mm/sec, yield electric field gradients at the iron nucleus ofq z=+9.7·1017 V/cm2 and +9.6·1017 V/cm2, whereq z⊥H; Debyetemperatures of θ=162 °K and 188 °K are obtained. The energy of the excited 3d-electron levels in iron-stilbene is estimated to Δ1=309 cm?1 and Δ2=618cm?1 as deduced from the temperature dependence ofΔE. In contrast to the suggestion ofEuler andWillstaedt bivalence of the iron in ironstilbene is found; its composition is shown to be 4(FeCl2 ·H 2O)·stilbene.  相似文献   

20.
Lines of the 3ν23 “forbidden” band of 12C16O2 have been identified in the 2000-cm?1 region of a long-path, 0.01-cm?1 resolution laboratory absorption spectrum. This band has detectable intensity due to Δl = 2 Fermi interactions between the upper level and the nearby ν1 + ν2 and 3ν21 levels. Intensities of 18 lines of this band have been measured using a nonlinear least-squares spectral fitting technique. The intensities are enhanced at high J and an expression for the intensity distribution as derived by Toth [Appl. Opt.23, 1825–1834 (1984)] is used for the analysis. In terms of the total sample pressure, the vibrational band intensity is 0.194 ± 0.008 × 10?30 cm?1/molecule-cm?2 at 296 K. The coefficient in the F factor is analogous to the Coriolis coefficient ξ and has been determined to be ?0.0413 ± 0.0015. As expected by theory, its value is very close to that of ξ for the related ν1 + ν2 band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号