首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AES and EELS spectra have been measured on clean and oxidized chromium surfaces. Auger peaks at 31.0 and 44.0 eV of the oxide are attributed to cross transitions between chromium and oxygen: {M2,3(Cr)V(Cr)V(O)} and {M1(Cr)L1(O)V(Cr)} respectively. Core loss features are consistent with valence band structure with a newly observed loss peak at 41.1 eV for the oxidized surface being ascribed to a core exciton with binding energy Eb = 1.6 eV.  相似文献   

2.
The energy distributions N(E) of secondary electrons emitted from GaP and InP samples bombarded with 40 keV Ar+ ions have been studied by a retarding potential method and an electronic derivation. The spectra show beyond an intensive peak developed at 2 eV, a detailed spectrum between 80 and 140 eV. The analysis of this spectrum reveales Auger electrons corresponding to L23(P) VV and L23MIV–V(Ga) V [or L23(P) NIV-V(In) V] transitions; moreover, peaks due to plasmon excitations and d band excitations can be distinguished.  相似文献   

3.
The Coster-Kronig and Auger spectrum of theL 1 shell of gaseous argon has been investigated with an electrostatical spectrometer. The ionization in theL 1 shell of argon was caused by electron impact. Absolute energies and relative intensities of all the Coster-Kronig and Auger transitions have been determined. The relative intensities of transitions within the groupsL 1 L 2, 3 M 1,L 1 L 2, 3 M 2, 3 andL 1 MM agree fairly well with the theoretical values, calculated byRubenstein for extreme Russel-Saunders coupling, if intermediate coupling theory is used properly. Via the widthγ(L 1) of theL 1 level of argon, found in this experiment to be (1.84±0.2) eV, the following absolute group transition probabilities were determined (in units of 1014 sec?1):W(L1 L 2, 3 M 1)=(5.5±1.0),W(L1 L 2, 3 M 2, 3)=(20.8±2.8),W(L1 MM)=(1.44±0.16). The theoretical values are 21.0, 20.4 and 1.27. The possible reason for the large discrepancy between the experimental and theoretical value ofW(L1 L 2, 3 M 1) is the use of the incorrect value of 287 eV for the binding energyE(L1) byRubenstein. From the energies of theL 1 MM transitions this value has been determined to beE(L1)=(326.5±0.5) eV. This is the first direct measurement ofE(L1) of argon.  相似文献   

4.
The Ge:L2MM Auger electron spectra excited by Mg Kα X-rays from Ge(CH3)4 free molecules have been compared with the corresponding spectra excited by Al Kα X-rays. The Al Kα excited spectra have characteristic features of the diagram Auger transitions, because the excitation energy is far above the L2 ionization threshold. The energy of Mg Kα photons is 1.21 eV below the Ge:L2 ionization threshold and thus the Mg Kα excited L2MM Auger electron spectra indicate many-body effects, post collision interaction (PCI) effects and spectator Auger satellite structures. The L2M4,5M4,5 type spectrum displays both these features but the L2M2,3M4,5 type spectrum has only a spectator Auger satellite structure, because the (3p−13d−1nl) final state interferes with the (3s) hole state.  相似文献   

5.
Chemical shifts of Auger transitions and photoelectron binding energies of silicon have been measured and interpreted using the quasi-atomic approach. The Si KL2,3L2,3 and L2,3V1V1 Auger transitions and the binding energies of Si 2p and of the valence electrons at the maximum of the density of states V1 have been investigated in solid silicon and in the compounds SiC, Si3N4, SiO2, Na2SiF6 and T3Si (T = V, Cr, Mn, Fe, Co, Ni). The relaxation-energy shift ΔReaS(2p, 2p) describing the polarization effect (final-state effect) has been evaluated by AES and XPS measurements. Furthermore, the extra-atomic relaxation energy ReaD(2p) of the 2p electrons has been determined experimentally for silicon atoms in differing environments. This allows estimation of the potential parameter V(2p) describing the potential effect (initial-state effect). In general ReaD(2p) was found to be more sensitive to changes in chemical bonding than V2p). The behaviour of the quasi-atomic Si V1 electrons seems to be the converse.  相似文献   

6.
Measurements of the zinc L2,3M4,5M4,5 Auger spectra are reported. The line shapes in solid zinc are similar to those in zinc vapour but the Auger energies have increased by about 15 eV and the line breadths have broadened from 0.5 eV to 1.0 eV fwhm. The ratio of the L2:L3 groups differ from the vapour suggesting that L2L3M4,5 Coster-Kronig transitions occur in the solid but not in the vapour. Changes in the spectra with oxidation have been observed. The Auger lines broaden on oxidation and a line breadth of 3.2 eV fwhm gives the best fit to the spectrum of almost fully oxidised zinc. The oxide L3M4,5M4,51G4 peak progressively shifts from 2.6 eV to 4.2 eV below the metal peak as the oxide thickness increases, the latter value being close to the measured shift in crystalline zinc oxide. Similar energy variation is reported for solid Argon condensed onto clean silver and the shifts are explained in terms of variation in “extra electron relaxation” with film thickness.  相似文献   

7.
In this paper we consider operatorsH 0 andV possessing the following properties:
  1. H 0 is a positive self-adjoint operator acting inL 2(M, γ) with γ a probability measure, so that exp(?tH 0) is a contraction onL 1(M, γ) for eacht>0.
  2. V is a semibounded multiplicative operator acting inL 2(M, γ) {fx379-1}
Under these assumptions theorems of Lie-Trotter type are derived for the operatorsH, H 0, V, whereH is a self-adjoint extension of the algebraic sumH 0+V, and is built by the form method. Under the additional assumption thatV(·)∈L 2(M, γ) we prove an essential self-adjointness ofH 0+V. The results obtained are applicable to non-relativistic quantum mechanics.  相似文献   

8.
Auger (AES) and X-ray photoelectron spectroscopic (XPS) characterizations of electrochemically oxidized titanium are described. Surface oxides on thin (200–250 Å) vacuum deposited titanium films were formed under conditions of linear potential scan in 1 N KClO4, 1 N HClO4 and 1 N H2SO4. Current/voltage, capacitance/voltage and surface conductance/voltage relationships confirmed the irreversible formation of the surface oxide at thickness of 20–30 Å/V, for low applied potentials. Post moretem analysis of the thin films by AES and XPS indicated a mixture of metal and metal oxides (TiO2, Ti2O3, TiO) on each surface, with the higher oxide states predominating on the electrochemically oxidized films. Observation of the LIIIM2,3M4,5, N(E) signal shape in the Auger spectra of the potentially oxidized oxidized films showed a suboxide TiO-like surface rather than an TiO2 surface state. Deconvolution of the Ti(2p12, 32) XPS spectra confirmed the coexistence of multiple oxidation states of Ti during electrochemical or atmospheric oxidation of the films. Ion sputtering of each surface was used to characterize the subsurface metal/metal oxide composition and to correlate the oxygen to metal atomic ratio with electrochemical pretreatment.  相似文献   

9.
Auger spectra for L3M23V and L3V V transitions involving, respectively, one and two valence holes in the final state, have been measured for Cr and CrSi2 using both X-ray photons and electrons as ionization source. Careful subtraction of the energy losses from the raw data permits determination of the lineshape of the Auger spectra. The valence hole spectral functions derived from the L3M23V transitions are compared with valence band spectra obtained by X-ray photoemission. The comparison provides direct evidence of the importance of multiplet coupling between the 3p and 3d holes in the final state. Results for the spectral function of two valence holes are consistent with the outcome of band structure calculations, although some correlation effects seem to be present.  相似文献   

10.
The possibility of studying correlation effects through Auger electron spectrometry has been shown recently by Krause, Carlson and Moddeman in the case of theK Auger spectrum of neon. As a further example we have measured theM 4,5 Auger spectrum of krypton with high resolution. Correlation effects have been found via the strong deviations of relative intensities of Auger diagram lines (e.g.M 4,5 N 1 N 2,3(1 p 1)) from theoretical values and via the occurence of double Auger transitions, where one electron is emitted and another is excited. A critical examination of high resolution Auger spectra of noble gases, which has been measured so far, has shown that several non diagram lines can be assigned to double Auger transitions of the above kind.  相似文献   

11.
Auger electron spectra have been recorded when oxygen is adsorbed on a Ni(111) single crystal surface. For the coverage range θ < 1, an analysis of the plot of the peak to peak height (H) of the oxygen KVV (516 eV) transition versus the total number of molecules cm2? impinging on the surface (molecular beam dosing) shows agreement with the kinetic mechanism proposed by Morgan and King [Surface Sci. 23 (1970) 259] for the adsorption of oxygen on polycrystalline nickel films. In this coverage range, no energy shifts of the nickel or oxygen Auger peaks were recorded.At coverages θ > 1 (standard dosing procedure) shifts in the valence spectra M2, 3VV (61 eV) and L3M2, 3V (782 eV) of ?2.3 eV and ?1.8eV respectively are recorded at 1.4 × 10?2 torr-sec. Up to these coverages no shift of the L3VV transition (849 eV) is observed. A chemical shift of ?2.1 eV is recorded in the L3M2, 3M2, 3 Auger transition (716 eV) at 1.4 × 10?2 torr-sec.In the coverage range θ > 1, shifts in the energy of the oxygen Auger peaks are observed. At 5.8 × 10?3 torr-sec. the KVV (516 eV) and KL1V (495.2 ± 0.3 eV) transitions show shifts of ?1.5 eV and ?(1.0 ±0.3) eV respectively. No shift up to this coverage is recorded in the KL1L1 (480.6 ± 0.3 eV) transition.  相似文献   

12.
The angular distribution of Auger electrons is considered. The results of numerical calculations of the anisotropy parameter of the angular distribution α2 for the N 3 O 1 O 4, 5 and L 3 M 1 M 4, 5 transitions in the Hg atom are reported. The matrix elements were calculated by the Dirac-Fock method in the relativistic approximation using the intermediate-coupling scheme.  相似文献   

13.
A theoretical model is proposed on how a Si dangling bond associated with an oxygen vacancy on a SiO2 surface (Es′ center) should be observed by Auger electron spectroscopy (AES). The Auger electron distribution NA(E) for the L23VV transition band is calculated for a stoichiometric SiO2 surface, and for a SiOx surface containing Si-(e?O3) coordinations. The latter is characterized by an additional L23VD transition band, where D is the energy level of the unpaired electron e?. The theoretical NA(E) spectra are compared with experimental N(E) spectra for a pristine, and for an electron radiation damaged quartz surface. Agreement with the theoretical model is obtained if D is assumed to lie ≈2 eV below the conduction band edge. This result shows that AES is uniquely useful in revealing the absolute energy level of localized, occupied surface defect states. As the L23VD transition band (main peak at 86 eV) cannot unambiguously be distinguished from a SiSi4 coordination L23VV spectrum (main peak at 88 eV), supporting evidence is presented as to why we exclude a SiSi4 coordination for our particular experimental example. Application of the Si-(e?O3) model to the interpretation of SiO2Si interface Auger spectra is also discussed.  相似文献   

14.
The KLL Auger spectrum of Ni generated in the electron capture decay of radioactive 64Cu in a solid state matrix was measured for the first time using a combined electrostatic electron spectrometer adjusted to a 7 eV instrumental resolution. Energies and relative intensities of the all nine basic spectrum components were determined and compared with data obtained from X-ray induced spectra of metallic Ni and with theoretical results as well. Absolute energy of 6562.5 ± 1.3 eV (related to the Fermi level) measured for the dominant KL2L3(1D2) than a value obtained from the X-ray induced spectra which is probably caused by the effects of chemical bonding and physico-chemical environment. Moreover, it is higher by 20.4 eV (16??) than a prediction of the semi-empirical calculations by Larkins which indicates an influence of the ??atomic structure effect?? on absolute energies of the Auger transitions following the electron capture decay and, possibly, some imperfections in the calculations. Good agreement of the measured and predicted KL1L2(3P0/1P1) transition intensity ratios indicates perceptible influence of the relativistic effects on the KLL Auger spectrum even at Z = 28.  相似文献   

15.
High-energy X-ray photoelectron spectroscopy (XPS) is of particular importance for minimizing the effects of surface contamination by increasing photoelectron escape depths. In this study high-resolution high-energy Cu Kα1 and soft Al Kα1 XPS and Auger electron spectroscopy were used to compare the electronic structure of Ti in TiO2 powder and Ti metal. The Ti 1s in TiO2 XPS line is narrower and more symmetric than in Ti metal. A comparison of the relative intensities of the L23M23M45 and L23M23M23 Auger transitions in Ti metal and TiO2 is consistent with the expected transfer of Ti 3d electrons away from the Ti site in the oxide. The satellites accompanying the Ti 1s XPS line excited by Cu Kα1 X-rays occur at the same energies as the satellites accompanying the Ti 2s and 2p XPS lines excited by Al Kα1 X-rays indicating that they do not depend on the core-level, the experimental resolution or inelastic scattering processes.  相似文献   

16.
Auger lineshapes of the Ge M1M4,5V and M3M4,5V and Se M1M4,5V transitions in GeS (001) and GeSe (001) are measured and compared to XPS valence band spectra. Distortions in both types of spectra due to inelastic scattering, analyzer and source broadening, and core level lifetime broadening are removed by deconvolution techniques. The valence band consists of three main peaks at ?2 eV, ?8 eV, and ?13 eV. There is excellent agreement of peak positions in AES and XPS spectra. The Auger lineshapes can be interpreted in terms of site-specific densities of states. They indicate that the states at ~?8 eV and at ~?13 eV are associated with the cation and anion sites respectively. The bonding p-like states at the top of the valence band have both cation and anion character. The Auger lineshapes indicate that the states closest to the valence band maximum are preferentially associated with Ge.  相似文献   

17.
The Al Kα excited M4,5N4,5N4,5 Auger spectrum of Ba has been measured from the metallic sample evaporated on a Ag substrate. The spectrum has been decomposed into individual line components after the background subtraction. The decomposed spectrum has been compared with the theoretical spectrum calculated for the 4d?2 final state configuration in the mixed coupling scheme applying jj-coupling for the initial state and intermediate coupling for the final state. The most prominent structure of the spectrum shows the two 4d-hole coupling, but the structure which is caused by the Auger transitions M,45N2,3V has also been observed. The screening of the core holes in Ba metal seems to be produced by (5d6s) electrons. The simple excited atom model HF-calculations give an Auger kinetic energy shift (metal-free atom) of 16.7 eV, which is comparable to the experimental value 14–18 eV.  相似文献   

18.
《Solid State Ionics》2006,177(33-34):2889-2896
Chromium-containing NASICON-related phosphates of the type Na(1+x)CrxM(2−x)P3O12) (M = Ti, Hf, Zr) have been synthesised by solid state reaction and structurally characterised by Rietveld refinement of the powder X-ray diffraction data. Materials of composition A(1+x)/2CrxZr(2−x)P3O12 (A = Cd, Ca, Sr), have also been prepared and characterised. The crystal structure of Na(1+x)CrxM(2−x)P3O12 corresponds to R-3c symmetry for x values ranging from 0.15 to 2.00, whereas compounds of composition A(1+x)/2CrxZr(2−x)P3O12 corresponding to R-3c are obtained when x  1.00 for Sr2+ and Ca2+, and x  1.50 for Cd2+. The polarizing effect of the two different metal ions A and M on the phosphorus atom and the P–O bond was studied by both 31P MAS NMR and infrared spectroscopy and shows that the electron density on the phosphorus, and thus the strength of the P–O bonds, are affected by both the interstitial (A) and the structural (M) metal ions.  相似文献   

19.
The low-energy electron spectrum from the 57Co decay has been examined in the region from 0 up to 15 keV at instrumental resolution ranging from 2 to 15 eV. Two electrostatic spectrometers and radioactive sources prepared by vacuum evaporation of 57Co onto Al foils were utilized. Relative intensities of the main spectrum components have been obtained as follows: (TSE+LLX+Shake-off)/LMM/KLL/KLM/KMM/K−14.4/L−14.4/MN−14.4=116±12/51±4/59.7±1.8/15.2±0.4/1.15±0.07/49.6±1.5/5.05±0.15/0.79±0.02 where TSE means “true secondary electrons”. Absolute and relative energies of the LMM, KLL, KLM, and KMM Auger transitions in Fe have also been determined, as well as their relative intensities with the exception of the LMM lines, the shapes of which were strongly distorted due to the inelastic electron scattering and probably also chemical effects. From the measured conversion electron lines of the 14.4 keV M1 transition in 57Fe, a transition energy of 14412.8±0.8 eV and the E2 admixture less than 8×10−6 were derived. Relative intensities of both the KL2,3(M4,5N1) Auger line group and the M4,5N1−14.4 conversion line were found to be lower by about 30% for the “oxide” state of decaying 57Co atoms than for the “metallic” state. Pronounced broadenings of narrow spectrum lines have been observed as a consequence of the oxidation of the 57Co sources in the laboratory atmosphere. Natural widths for most of the KLL, KLM, and KMM Auger lines and those of the K, L1, L2, L3, M1, M2, M3 and N1 atomic levels in 57Fe were also determined.  相似文献   

20.
The initial stages of the interaction of oxygen with a Cr(110) surface have been investigated at 300 K by LEED, AES, electron energy loss spectroscopy (ELS), secondary electron emission spectroscopy (SES) and work-function change measurement (Δφ). In the exposure region up to 2 L, the clean-surface ELS peaks due to interband transition weakened and then disappeared, while the ~5.8 and 10 eV loss peaks attributed to the O 2p → Cr 3d transitions appeared, accompanied with a work-function increase (Δφ = +0.19 eV at2L). In the region 2–6 L the work function decreased to below the original clean-surface value (Δφmin = ?0.24 eV at6L), and five additional ELS peaks were observed at ~2, 4, 11, 20 and 32 eV: the 2 and 4 eV peaks are ascribed to the ligand-field d → d transitions of a Cr3+ ion, the 11 eV peak to the O 2p → Cr 4s transition, the 20 eV peak to the Cr 3d → 4p transition of a Cr3+ ion and the 32 eV peak probably to the Cr 3d → 4f transition. A new SES peak at 6.1 eV, being attributed to the final state for t he 11 eV ELS peak, was observed at above 3 L and identified as due to the unfilled Cr 4s state caused by charge transfer from Cr to oxygen sites in this region. In the region 6–15 L the work function increased again (Δφmax = +0.32 eV at15 L), the 33 and 46 eV Auger peaks due to respectively the M2,3(Cr)L2,3(O)L2,3(O) cross transition and the M2,3VV transition of the oxide appeared and the 26 eV ELS peak due to the O 2s → Cr 4s transition was also observed. Above 10 L, the ELS spectra were found to be practically the same as that of Cr2O3. Finally, above 15 L, the work function decreased slowly (Δφ = +0.13 eV at40L). From these results, the oxygen interaction with a Cr(110) surface can be classified into four different stages: (1) dissociative chemisorption stage up to 2 L, (2) incorporation of O adatoms into the Cr selvedge between 2–6 L, (3) rapid oxidation between 6–15 L leading to the formation of thin Cr2O3 film, and (4) slow thickening of Cr2O3 above 15 L. The change in the Cr 3p excitation spectrum during oxidation was also investigated. The oxide growth can be interpreted on the basis of a modified coupled current approach of low-temperature oxidation of metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号