首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electrical conductivity of the system Y2O3CeO2 was measured in the temperature range 500–1100°C and Po2 range 10–7?10?1 atm. Possible defect models were suggested on the basis of conductivity data, which were investigated as a function of temperature and of Po2. The observed activation energies were 0.40 eV and 1.79 eV in the low- and high-temperature regions, respectively. The observed conductivity dependences on Po2 were σ ∝ P16O2 in the temperature range 500–750°C and σ ∝ P15.3O2 at temperatures from 750–1100°C. It is suggested that the system Y2O3CeO2 shows a mixed ionic plus hole conduction due to an Oi defect and an electronic hole conduction due to a V'''Y defect in the low- and high-temperature regions, respectively.  相似文献   

2.
The emission of Ni2+ ions in MgO, KMgF3, KZnF3 and MgF2 crystals has been investigated. The fine structure on the bands at about 20 000 cm-1 and 13 000 cm-1 has been studied in detail and from this and the excitation spectra these bands are assigned to 1T2g3A2g and 1T2g3T2g transitions respectively.  相似文献   

3.
Optical absorption spectra of Ni2+ in (NH4)2Mg(SO4)2·6H2O and Co2+ in Na2Zn(SO4)2·4H2O single crystals have been studied at room and liquid nitrogen temperatures. From the nature and position of the observed bands, a successful interpretation could be made assuming octahedral symmetry for both the ions in the crystals. The splitting observed for 3T1g(F) band in Ni2+ and 4T2g(F) band in Co2+ at liquid nitrogen temperature have been explained as due to spin-orbit interaction. The extra band observed at 16,325 cm-1 in the case of Ni2+ at low temperature has been interpreted to be the superposition of vibrational mode of SO2-4 radical on 3T1g(F) band. The observed band positions in both the crystals have been fitted with four parameters B, C, Dq and ζ.  相似文献   

4.
Emission from both the B 3Π0+ state and the previously unreported A 3Π1 state of IF has been observed in the gas phase reaction of I2 with F2 at low pressures. For the B 3Π0+ state the transition moment and vibrational populations were extracted from the spectra by a least-squares method whereby theoretical band shapes were fit to the experimental data. The effect of flow rates of reactants and Ar on the relative emission from the two electronic states, the effect of pressure on the B 3Π0+ state, and extinction of emission near 470 nm all favor the population of excited electronic states through a four-center reaction complex, rather than association of F and I atoms.It is argued that there is an avoided curve crossing between the lowest two 3Π0+ states of IF, and that the ground state dissociation energy is 23 229 ± 100 cm?1. The radiative lifetime of the B 3Π0+ state is estimated to be 10?3 sec and to be much shorter than that of the A 3Π1 state.  相似文献   

5.
The charge density wave transition in 2H-TaS2near 75 K has been observed to be incommensurate, using electron diffraction, with q1 = (0.338 ± 0.002)a10 along the 〈10.0〉 directions which, within the experimental uncertainty, remains temperature independent to about 14 K. Incommensurate charge density formation is also observed in AgxTaS2 samples for x?0.26 with an increase in q1 to (0.347 ± 0.002)a10 when x?0.26. Within the experimental error q1 appears to be temperature independent to 25 K.  相似文献   

6.
CuAlCO2 is a p-type semiconductor with an average hole mobility of 1.1 × 10?7m2Vs. From photoelectrochemical measurements its bandgap is found to be indirect allowed at 1.65 eV; other interband transitions are at 2.3 and 3.5 eV. The valence band is made up mainly from Cu-3d wave functions and lies 5.2 eV below the vacuum level.  相似文献   

7.
Zinc and cadmium atoms have been condensed with argon and krypton at 10 K. The most intense absorption is due to the 1P11S0 atomic transition, and a weak band is due to the 3P11S0 atomic absorption. Structured absorptions at 252 and 254 nm in solid argon and krypton with vibrational spacings of 140-120 cm?1 are due to the 1Σu+1Σg+ transition of Zn2. Similar 273 and 277 nm absorptions with 110-90 cm?1 vibrational spacings are due to Cd2 in solid argon and krypton, respectively.  相似文献   

8.
The X-ray structure (293 K) of UO2(H2PO4)2·3H2O has been refined (R = 0.062): Mr = 518g, space group: P21/c (Z = 4); a = 10.816(1) A?, b = 13.896(2) A?, c = 7.481(1) A?, β = 105.65(1)°, V = 1082.7(2) A?3; Dc = 3.17 Mg m?3. The structure consists of infinite chains along the (101) axis with U atoms bridged by two H2PO4 groups. The U atom is surrounded by a pentagonal bipyramid of oxygen atoms, one of them being an equatorial water molecule. The cohesion between the chains is ensured by hydrogen bonds involving the two last water molecules. An assignment of IR and Raman bands with isotopic substitution spectra is proposed. A phase transition at 128 K was made evident by DSC and spectroscopy. The room-temperature phase is characterized by a high disorder of the OH bond orientation while in the low-temperature phase H2O and POH species appear well oriented. The conductivity seems to occur by proton transfer and protonic-species rotation at the POH-water molecular interface between the chains. ac conductivity has been determined by means of the complex-impedance method (σRT ~ (3?12) × 10?5 Ω?1cm?1; E ~ 0.20 eV).  相似文献   

9.
EPR of 61Ni+ doped CuGaS2 at 4.2 K leads to the following experimental data: g = 1.918 ± 0.006 A  < 12 × 10-4cm-1, g = 2.328±0.006 A = (65±2) × 10-4cm-1. High axial field splitting of 2T2 state stabilizes the center against Jahn-Teller interaction. Covalency reduction factor k is 0.76.  相似文献   

10.
The emission spectrum of B2 was reinvestigated under high resolution. Six bands of 11B2 (0-0, 1-1, 1-0, 2-1, 3-2, and 0–1) as well as four bands of 10B11B (0-0, 1-0, 2-1, and 3-2) were rotationally analysed. Accurate rotational and vibrational constants were obtained. The triplet character of the transition (3Σu?-X 3Σg?) was unambiguously established for the first time and spin-spin interaction constant is obtained for the excited state.  相似文献   

11.
The effect of γ irradiation at 300 K on the concentrations of vanadium ions V3+, V4+ and V2+ in Al2O3 has been studied quantitatively, using three techniques: optical absorption (V3+), low temperature thermal conductivity measurements (V4+) and EPR (V2+). Several single crystals of Al2O3 doped with vanadium in a large range of concentration (2.8 × 1018? 1.3 × 1020at.cm3) have been measured. The evolution of the respective concentrations by γ irradiation as a function of the total vanadium content C is quite different in the two regions C< 1.2 × 1019at.cm3 and C larger than this value. A consistent analysis of the results has nevertheless been achieved, leading to the determination of the absolute concentrations of the three ions in the as-received and γ irradiated states for all samples with C<4.2 × 1019at.cm3 (room temperature annealing is observed above this value). The concentrations of V4+ and V2+ ions are always small, but V4+ ions are more stable: they are present in the as-received state at a level of 1% of the total concentration and a maximum value of /?2.3 × 1018at.cm3 is observed in the γ irradiated state; on the other hand there are less than 4.7 × 1015V2+ ions per cm3 in the as-received state and the maximum value is only 4.2 × 1017at.cm3. Charge transfer between V ions only is not sufficient to explain the experimental results and other defects must be involved in the γ irradiation effect.  相似文献   

12.
High resolution spectra of the ν3 band of methane, 12CH4, were recorded by using a “third generation vacuum Fourier interferometer”; a large pressure range (from 0.009 to 10 Torr) with a sample path fixed at eight meters was used, enabling observation of transitions with intensity ratios as low as 110 000. More than 350 forbidden transitions of the ν3 band, including about 125 transitions of the Q+ branch, were unambiguously identified. Of the 277 transitions retained for computations, one-hundred have 11 ≤ J ≤ 16. From combination difference relations using pairs of transitions having the same upper state energy level (forbidden-allowed and forbidden-forbidden pairs were used), 276 independent differences between ground state energy levels could be determined with uncertainties of about 0.001 cm?1.These data yielded the following values for the ground state structure constants of 12CH4 along with their standard deviations (in cm?1): βohc=5.2410356±0.0000096, γohc=(?1±0.00074) 10?4, πohc=(5.78±0.18) 10?9, ?ohc=(?1.4485±0.0023) 10?6, ?ohc=(1.768±0.126) 10?10, ξohc=(?1.602±0.067) 10?11, Thus, for the first time, the scalar constant π0 has been evaluated and ir values have been obtained for the two tetrahedral constants ?0 and ξ0; furthermore, these values are in very good agreement with the ones recently determined from radiofrequency data, i.e., in cm?1: ?ohc=(?1.45061±0.00014) 10?6, ?ohc=(1.7634±0.0068) 10?10, ξohc=(?1.5432±0.0040) 10?11 From these values, the 276 differences can be reproduced with an overall rms deviation equal to 0.0009 cm?1.Finally, the ground state energies of 12CH4 have been calculated for J ≤ 16.  相似文献   

13.
Metastable a(2sσ) 3Σu+ He2 molecules are produced by a dc discharge in a flowing He stream. Laser excitation downstream of the discharge produces excitation spectra for a number of He2 states. LIF spectra are observed for the (npπ) 3Σg+ series for n = 4–9, excepting 5 and the (npπ) 3Πg series for n = 5–15.  相似文献   

14.
Measurements of the molar magnetic susceptibility (Xm) of a powdered sample of Nd2(WO4)3 in the temperature range 300–900 K, and the electrical conductivity (σ) and dielectric constant (?)? of pressed pellets of the compound in the temperature range 4.2–1180 K are reported. Xm obeys the Curie-Weiss law with a Curie constant C= 3.13 K/mole, a paramagnetic Curie temperature θ= ?60 K and a moment of Bohr magnetons, p= 3.49 for the Nd3+ ion. The electrical conductivity data can be explained in terms of the usual band model and impurity levels. Both the σ and ?$?data indicate some sort of phase transition round 1025 K. The conductivity follows Mott's law σ = A exp (?B/T14) in the temperature range 200 < T < 3000 K with B = 45.00 (K)14and A = 1.38 × 10?5 Ω?1cm?1. The dielectric constant increases slowly up to 600 K, as is usual for ionic solids. The increase becomes much faster above 600 K, which is attributed to space-charge polarization of thermally generated charge carriers.  相似文献   

15.
The absorption and MCD spectra of the 4A2g4T2g, 4A2g, 4A2g4T1ga and 4A2g4T1gb spin-allowed transitions of Cr3+ in K2NaGaF6 are reported. It is shown that transitions to the 4T1g. states are induced by T1u vibratio the other spin-allowed transition, 4A2g4T2g, there are three competing intensity mechanisms: electric dipole induced by T1u vibrations, electric dipole induced by T2u vibrations and magnetic dipole, and an estimate is made of the relative importance of these. The magnetic dipole 4A2g2Eg zero-phonon line is observed to be accompanied by a vibrational sideband for which the coupling is predominantly with T2u vibrations. Other weak transitions are observed in MCD spectra and their origin briefly discussed.  相似文献   

16.
Spectral luminescence characteristics of the Cs2Na(Er, Yb, Y)Cl6 type upconverter have been measured in the range 300–650 K. A nearly sixfold decrease of the emission intensity of an upconverter was observed in the green area. This emission corresponds to two luminescence transition of Er3+ ions: 2H1124I152 and 4S324I152. A mechanism of the luminescence intensity decrease has been proposed, in which deexcitation of the 4S32 level to the 4I132 level is caused by a neighbouring Er3+ ion being excited to the 4I92 level.  相似文献   

17.
A high-resolution infrared spectrum of methane-d2 has been measured in the C-D stretching band region (2025–2435 cm?1). Rotational structures of the ν2 and ν8 bands have been assigned by use of the ASSIGN-diagram method, and the c-type Coriolis interaction between ν2 and ν8 has been analyzed. The band origins, ν2 = 2203.22 ± 0.01 cm?1 and ν8 = 2234.70 ± 0.01 cm?1, the rotational constants and the centrifugal distortion constants for the two bands, and the Coriolis coupling constant, ∥;ξ28c∥; = 0.182 ± 0.015 cm?1, have been determined.  相似文献   

18.
The rectilinear and angular mean-square displacements of the atoms in K2SnCl6 have been measured from 293 to 450 K using single-crystal X-ray diffraction. The motion of the tin and chlorine atoms has been found to consist, essentially, of rigid-body translation and libration of the SnCl6 octahedra. The root-mean-square angle of libration of the SnCl6 octahedra, φ212, ranged from 5.7 to 6.1°. The slow variation of φ2 with temperature, together with the measured non-zero value of one of the fourth cumulants of the chlorine atom displacement, are indicative of highly non-linear coupled motion associated with the soft-mode phase transition at 261.5 K.  相似文献   

19.
The rotational structure of the 000-000 band of the 2490-Å system of 15NO2 (22B2 - X?2A1) has been analyzed from high dispersion grating spectrograph plates. The band is found to be slightly predissociated, exactly as in the 14NO2 isotope, which suggests that it might be usable for laser separation of the isotopes of nitrogen; tables of the wavenumbers of the lines are given. The upper-state molecular constants are close to the values calculated by the isotope relations from those of 14NO2.  相似文献   

20.
BS2, trapped in neon matrices at 4°K, exhibits extensive progressions in the A2Πu ← X2Πg and B2Σu+ ← X2Πg systems. From these transitions, those observed in the infrared, and a reinterpretation of gas-phase data, the following molecular constants (in solid neon) are obtained for linear symmetric 11BS2 (in cm?1):
  相似文献   

B2Σu+T0 = 24,072ν1 = 516
A2ΠuT0 = 13.766ν1 = 506
A0 = ?263ν2 = 311
ν3 = 1535
X2ΠgA0 = ?440ν1 = 510
ν2 = ~120
ν3 = 1015
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号