首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
葛子义 《高分子科学》2017,35(2):171-183
Development of organic semiconductors is one of the most intriguing and productive topics in material science and engineering. Many efforts have been made on the synthesis of aromatic building blocks such as benzene, thiophene and pyrrole due to the facile preparation accompanied by the intrinsic environmental stability and relatively efficient properties of the resulting polymers. In the past, furan has been less explored in this field because of its high oxidation potential. Recently, furan has attracted obsession due to its weaker aromaticity, the greater solubilities of furan-containing π-conjugated polymers relative to other benzenoid systems and the accessibility of furan-based starting materials from renewable resources. This review elaborates the advancements of organic photovoltaic polymers containing furan building blocks. The uniqueness and advantages of furan-containing building blocks in semiconducting materials are also discussed.  相似文献   

2.
Exploring the charge transport properties and electronic functions of molecules is of primary interest in the area of molecular electronics. Conjugated polymers (CPs) represent an attractive class of molecular candidates, benefiting from their outstanding optoelectronic properties. However, they have been less studied compared with the small-molecule family, mainly due to the difficulties in incorporating CPs into molecular junctions. In this review, we present a summary on how to fabricate CP-based singlechain and monolayered junctions, then discuss the transport behaviors of CPs in different junction architectures and finally introduce the potential applications of CPs in molecular-scale electronic devices. Although the research on CP-based molecular electronics is still at the initial stage, it is widely accepted that (1) CP chains are able to mediate long-range charge transport if their molecular electronic structures are properly designed, which makes them potential molecular wires, and (2) the intrinsic optoelectronic properties of CPs and the possibility of incorporating desirable functionalities by synthetic strategies imply the potential of employing tailor-made polymeric components as alternatives to small molecules for future molecular-scale electronics.  相似文献   

3.
Two polymers with benzoxadiazole acceptor units were synthesized and investigated as electron donor materials in organic solar cells. Variation of the alkyl substituents was shown to significantly affect the optoelectronic properties of the polymers. In particular, the polymer HOMO energy level was lowered by 0.1 eV, while maintaining the same band gap, by replacement of the 2-ethylhexyl side-chains with the 2-hexyldecyl group. This modification also resulted in a higher open circuit voltage of the solar cells.  相似文献   

4.
The Suzuki polycondensation of a dihalogenated 4,5-diphenylimidazole (2) with a fluorenyl diboronic acid diester followed by methylation afforded a conjugated poly(imidazolium) copolymer (P2) in 93% yield. Upon exposure to strong base, P2 was converted in situ to the corresponding poly(N-heterocyclic carbene) P3, as evidenced by 1H NMR spectroscopy and a trapping experiment involving sulfur that afforded the corresponding poly(thiourea) P4. Similarly, treating a solution of P2 with KOtBu and [Ir(1,5-cyclooctadiene)Cl]2 afforded a conjugated polymer bearing pendant Ir complexes (P5) in 63% yield. Thermal and photophysical analyses of the aforementioned polymers revealed that they were thermally stable with tunable fluorescence properties, features which poise them for use in various electronic and sensing applications. The presented methodology is expected to facilitate the synthesis of a broad range conjugated organometallic polymers from a common and readily accessible precursor.  相似文献   

5.
Direct (hetero)arylation, as a sustainable, atom-economic and environmentally benign synthetic protocol compared to conventional coupling techniques, has been extensively applied to the sustainable preparation of π-conjugated materials for organic optoelectronic devices. In this review, we will highlight recent advances made in direct arylation for conjugated small molecules and polymers toward high performance organic optoelectronic devices. Some important insights in direct arylation for synthesizing organic optoelectronic materials are given, together with the challenges and outlook in this significant and hot research field.  相似文献   

6.
Two low band gap conjugated polymers, poly[4,9-bis(4-hexylthien-2-yl)-6,7-di(thien-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline] (PHTTQ) and poly[5,10-bis(4-hexylthien-2-yl)-2,3,7,8-tetra(thien-2-yl)pyrazino[2,3-g]quinoxaline] (PHTPQ), consisting of alternating electron-rich 3-hexylthiophene and electron-deficient 6,7-di(thien-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (TTQ) and 2,3,7,8-tetra(thien-2-yl)-2,3-dihydropyrazino[2,3-g]quinoxaline (TPQ) units were synthesized electrochemically. The structures of the π-conjugated monomers were tailored using thiophene as the pendant group on the acceptor units (TTQ and TPQ). The electrochemical and optical properties of the polymers were investigated by cyclic voltammetry and UV-vis-NIR spectroscopy. The absorption spectra of PHTPQ, revealing a 1.0 eV band gap, exhibited three maxima at 352 nm, 535 nm, and 750 nm. Consequently, its absorption spectra cover the region between 400 and 800 nm, which make the polymer almost black in appearance. PHTTQ shows a λmax value of 820 nm and a band gap of 0.8 eV which is very low among other [1,2,5]thiadiazolo[3,4-g]quinoxaline-containing donor-acceptor type polymers.  相似文献   

7.
Novel conjugated polymers based on squaric acid having 2,5-Bis[(E)-N-alkylpyrrol-2-ylvinyl]-3-alkylthiophene(PVTVP) unit in the main chain were successfully synthesized in good yields through polycondensation reaction.Their molecular structures were characterized by FT-IR and ~1H NMR.They have good solubility in common organic solvents,good thermal stability by thermal gravimetric analysis and high molecular weights.Their optical properties were investigated by UV-vis absorption spectra in CH_2Cl_2 solution,the results indicated all these compounds showed broad and strong spectral responses from 200nm to 900nm, suggesting their potential for application as organic plastic solar cells.  相似文献   

8.
Ethylhexyloxy-functionalised pyrene (PEH) was prepared and copolymerised with both dithienyl-benzo[c]-[1,2,5]thiadiazole and dibithiophenyl-benzo[c]-[1,2,5]thiadiazole via a Stille coupling polymerisation method to yield PPEH-DTBT-8 and PPEH-DT2BT-8, respectively. A comparative study was conducted to assess the impact of substituting thiophene for bithiophene repeat units upon the resulting properties of the conjugated polymers. PPEH-DT2BT-8 which has bithiophene spacers between pyrene and benzothiadiazole repeat units, exhibited a narrower optical and electrochemical band gap relative to PPEH-DTBT-8; a consequence of the incorporating bithiophene spacer units which promote intramolecular charge transfer between the electron donating and electron accepting moieties. Both PPEH-DTBT-8 and PPEH-DT2BT-8 showed deep HOMO levels of −5.54 and −5.50 eV, respectively. The polymers possess good thermal stabilities with degradation temperatures in excess of 310 °C. The photovoltaic performance of the two polymers was studied by fabricating bulk heterojunction (BHJ) photovoltaic devices using PC70BM as the acceptor. PPEH-DTBT-8 and PPEH-DT2BT-8 demonstrated efficiencies of 0.33 and 1.83%, respectively. The higher efficiency of PPEH-DT2BT-8 can be attributed to vastly improved FF and Jsc values.  相似文献   

9.
We reported on two polymer semiconducting copolymers based on porphyrin compounds, poly[9,9-dioctylfluorene-co-5,15-bis(hexoxybenzyl)-10,20-bis(benzo-4-yl)porphyrin] (PFPor) and poly[9-(heptadecan-9-yl)carbazole-co-5,15-bis(hexoxybenzyl)-10,20-bis(benzo-4-yl)porphyrin] (PCPor), for use as organic photovoltaic materials. The thermal, optical, electrochemical, and photovoltaic properties of the two polymers were investigated. In addition, PC61BM and PC71BM were introduced as acceptor materials to confirm the acceptor effect in bulk heterojunction photovoltaic devices. Moreover, in order to establish acceptor effects, morphologies of polymer/PCBM blend films were analyzed through atomic force microscopy (AFM). PFPor and PCPor exhibited the best device performance with power conversion efficiencies (PCE) of 0.62% and 0.76%, respectively, upon the introduction of PC71BM as the acceptor in the device where 86 wt.% of the PC71BM was contained in the active layer (pol:PC71BM = 1:6, w/w).  相似文献   

10.
Luminescent conjugated network polymer is one of the most promising chemo-sensors owing to their good chemical/optical stability and multiple functionalization.Herein,three conjugated network polymers were prepared by using aggregation-induced emission active 1,1,2,2-tetrakis(4-formyl-(1,1'-biphenyl))-ethane(TFBE) unit as monomer and hydrazine as linker.Through regulating the synthetical condition,the polyme ric network can form either unifo rm two-dimensional azine-linked nanosheets(ANS),conjugated microporous polymers(A-CMP) or covalent organic frameworks(A-COF).All of these polymers exhibited good stability and high fluorescence quantum efficiency with the quantum yield of6.31% for A-NS,5.26% for A-CMP,and 5.80% for A-COF,as well as fast and selective fluorescence quenching response to 2,4,6-trinitrophenol(TNP).And the best TNP sensing performance with the Stern-Volmer constants(K_(sv)) values up to 8 × 10~5 L/mol and a detection limit of 0.09 μmol/L was obtained for A-NS.The study explores various strategies to construct conjugated polymers with different nanoarchitectures based on the same building block for sensitive detection of explosives.  相似文献   

11.
Side chain engineering has been used for tuning the opto-electronic properties of organic semiconductors. In this work, a series of pyrimidine-based donor-acceptor (D-A) conjugated polymers functionalized with electron-withdrawing or electron-donating side chains were synthesized. The opto-electronic properties of the pyrimidine D-A conjugated polymers were investigated focusing on the dependence on the electron withdrawing strength of the acceptor moiety, while maintaining the same donor moiety. Fine-tuning of the energy levels was achieved by introducing electron donating (alkoxy [ OR] and alkylthio [ SR]) or electron withdrawing (alkylsulfinyl [ SOR] and alkylsulfonyl [ SO2R]) side chains onto the acceptor moiety. The effects of side chain modification have been investigated through DFT calculations, UV–vis analysis, and electrochemical measurements. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2547–2553  相似文献   

12.
耿延候 《高分子科学》2014,32(7):844-853
Four new low-band-gap alternating copolymers (P-1, P-2, P-3 and P-4) based on electron-rich benzodithiophene and newly developed electron-deficient units, thienopyrazine or dithiadiazatrindene derivatives, were synthesized by Stille polycondensation. All polymers exhibit good solubility in common organic solvents and a broad absorption band in the visible to near-infrared regions. The film optical band gaps of the polymers are in the range of 1.28-2.07 eV and the highest occupied molecular orbital (HOMO) energy levels are in the range of-4.99 eV to -5.28 eV. Bulk heterojunction polymer solar cells (PSCs) of the polymers were fabricated with phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor material, and a power conversion efficiency of 0.80% was realized with P-1 as donor material.  相似文献   

13.
In this report we describe the synthesis, optical and electrochemical properties of new conjugated copolymers (P1-P4) based on 3,4-dialkoxythiophene and 1,3,4-oxadiazole units. The copolymers are prepared using the precursor polyhydrazide route. The chemical structures of the copolymers are confirmed using FTIR, NMR spectroscopy and CHNS analysis. The polymers exhibit good thermal stability with the onset decomposition temperature in nitrogen at around 300 °C. The optical and charge-transporting properties of the copolymers are investigated by UV-visible absorption spectroscopy, fluorescence emission spectroscopy and cyclic voltammetry. The polymers depicted blue/green fluorescence under the irradiation of UV light. Cyclic voltammetry studies reveal that these copolymers have low-lying LUMO energy levels ranging from −3.28 to −3.32 eV and high-lying HOMO energy levels ranging from −5.26 to −5.62 eV, which indicated that they may be promising candidates for the fabrication of polymer light-emitting diodes. In addition, the copolymers showed good third-order non-linear optical properties.  相似文献   

14.
Three novel conjugated polymers bearing 3,4-bis(4-hexylthiophen-2-yl)-3-cyclobutene-1,2-dione unit in their main chain have been synthesized successfully in good yields through Suzuki or Stille coupling reaction.Their molecular structures have been confirmed by FT-IR,1H NMR and 13C NMR.All these copolymers exhibit broad and strong absorption bands in UV-vis region,and their optical band gaps are calculated to be 1.6-2.0 eV.suggesting that they have good coverage with the solar spectrum.These polymers have good thermostability and solubility in common organic solvents.Moreover,all these objective macromolecules possess high electron affinity of~3.8 eV determined from cyclic voltammetry measurement,implying that they are potential n-type polymeric photovoltaic materials.  相似文献   

15.
Density functional calculations using pseudopotentials and a plane-wave basis set are applied to study the geometry and the electronic structure of conjugated polymers consisting of heterocyclic aromatic rings. This article focuses on the computational methods. The influence of the pseudopotentials on the structural and electronic properties is studied. The rates of convergence of these properties with respect to the basis set size and the density of sampling points for the Brillouin zone integration are considered. The effects of using different exchange–correlation potentials (local density or generalized gradient approximations) are examined. It is shown that smooth norm-conserving pseudopotentials used for calculations on conjugated polymers lead to converged results with a moderately sized basis set. Received: 20 August 1999 / Accepted: 23 November 1999 / Published online: 19 April 2000  相似文献   

16.
《中国化学快报》2019,30(11):1947-1950
Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years.Constructing donor-acceptor(D-A) type molecules has been one of most commonly used strategies to achieve deep-red emission,but it is always difficult to achieve high photoluminescence(PL) quantum yield(η_(PL)) due to forbidden charge-transfer state.Herein,we report a new D-A type molecule 4-(7-(4-(diphenylamino)phenyl)-9-oxo-9 H-fluoren-2-yl)benzonitrile(TPAFOCN),deriving from donor-acceptor-donor(D-A-D) type 2,7-bis(4-(diphenylamino)phenyl)-9 Hfluoren-9-one(DTPA-FO) with a fluorescence maximum of 627 nm in solids.This molecular design enables a transformation of acceptor from fluorenone(FO) itself to 4-(9-oxo-9 H-fluoren-2-yl)benzonitrile(FOCN).Compared with DTPA-FO,the introduction of cyanophenyl not only shifts the emission of TPA-FOCN to deep red with a fluorescence maximum of 668 nm in solids,but also maintains the high η_(PL) of 10%.Additionally,a solution-processed non-doped organic light-emitting diode(OLED)was fabricated with TPA-FOCN as emitter.TPA-FOCN device showed a maximum luminous efficiency of0.13 cd/A and a maximum external quantum efficiency(EQE) of 0.22% with CIE coordinates of(0.64,0.35).This work provides a valuable strategy for the rational design of high-efficiency deep-red emission materials using cyanophenyl as an ancillary acceptor.  相似文献   

17.
18.
The Schiff bases 4-(ω-hydroxyalkyloxy)-N-(5-nitro-2-thienylmethylene)aniline with 2, 6 and 8 methylenic units in their alkyl group in which a nitrothienyl group as acceptor and an oxyphenyl group as donor were synthesized by condensation of (ω-hydroxyalkyloxy)anilines with 5-nitro-2-thiophenecarboxaldehyde. The methacrylate monomers 4-(ω-methacryloyloxyalkyloxy)-N-(5-nitro-2-thienylmethylene)aniline with alkylene groups of different lengths were synthesized by two different routes and polymerized using a free radical initiator to produce low molecular weight polymers useful for nonlinear optics. All the obtained compounds were characterized by conventional spectroscopic methods. First-order hyperpolarizability (β) of 4-(2-hydroxyethyloxy)-N-(5-nitro-2-thienylmethylene)aniline typically was calculated using semiempirical method and the nonlinear optic properties of the same compound was studied by second harmonic generation.  相似文献   

19.
We have used for the first time the laser intensity modulation method (LIMM) to resolve the depth profile of space charges in films of poly[(2-(2-ethylhexyl)-5-methoxy-1,4-phenylene)vinylene] (MEH-PPV), poly(pyridine-2,5-diyl) (PPY) and poly(fluorene) (PFO). The results demonstrate that in conjugated polymers space charges can not only be created but also stored permanently.  相似文献   

20.
Organic conjugated polymers and oligomers are key electronic materials for applications such as transistors, photovoltaics, and light emitting devices due to their potential for solution processability, mechanical flexibility, and precise structure-based tuning compared to inorganic materials. In dilute environments, the optoelectronic properties of conjugated polymers are largely governed by their constitutional structure and, to a lesser degree, their solution-state intramolecular configuration. In the solid state, intramolecular conformation and intermolecular electronic coupling impact these properties substantially, especially in relation to device performance. Therefore, an increasingly important area of research concerning conjugated materials is developing design strategies aimed at optimizing the solid-state packing for electronic applications. Programming solid-state packing arrangements through discrete non-covalent interactions is an emerging strategy within the context of conjugated polymers. This review focuses on the use of the two most prevalent discrete and directional interactions used to dictate the self-assembly of conjugated polymers and oligomers—hydrogen bonds and chalcogen bonds. We also discuss how these design motifs can imbue conjugated materials with appealing physical properties while simultaneously retaining or improving electronic capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号