首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work the interaction between oxygen and the silver (110) surface is investigated, mainly using LEED-Auger techniques and thermal desorption spectra. The formation and stability of adsorption layers is studied after exposures at pressures from 10?3 to 1 torr. At maximum coverage, a (2 × 1) superstructure is formed which is stable up to the desorption temperature. At lower coverage, (3 × 1) and (4 × 1) superstructures are also observed. On the basis of the experimental evidence, tentative models for these structures are presented and discussed.  相似文献   

2.
The adsorption position of oxygen on the clean Pt(111) surface has been determined by means of the transmission channeling technique. Oxygen adsorbs in a well ordered p(2 × 2) overlayer structure at temperatures 200 T 350 K. From an analysis of the angular scans along the [111], [110] and [100] axial directions it is concluded that the O atoms are adsorbed in the fcc three-fold hollow site exclusively at a height of 0.85 ± 0.06 Å above the Pt surface layer. From a narrowing of the [111] angular O scan, the O RMS displacement parallel to the surface is found to be 0.16 ±0.03 Å.  相似文献   

3.
We investigated the electronic structure of oxygen adsorbed on silicon surface in a head-on position, and showed that only the corresponding bonding structure is able to explain the features in UPS and ELS spectra that were not interpreted satisfactorily before. We also found that charge is transferred from backbonds to SiO bond and induces empty states localized between the first and second layers of the silicon surface.  相似文献   

4.
《Surface science》1986,177(2):353-362
The growth of Pd ultra-thin layers on a Ag surface is investigated by Auger electron spectroscopy and surface reflectance spectroscopy. At low temperature (− 150°C) the growth follows the Frank-Van der Merwe mode. At room temperature, a certain amount of Pd atoms migrate into the silver substrate. The optical spectra are interpreted within the virtual bound d level model.  相似文献   

5.
We have studied Ag(111) withk-resolved inverse photoemission spectroscopy athv=9.7 eV. In normal incidence we find image-state emission atE vac–(0.4±0.1) eV and the unoccupied part of an intrinsic surface-state band as a huge emission peak cut byE F. The energy dispersion of the intrinsic surface-state band and in particular its crossing ofE F predicted by Ho et al. cannot be observed because of broadening effects as is shown by a theoretical simulation. The broadening is due to the vicinity of the surface state to the bulk continuum nearE F as suggested by Kevan.  相似文献   

6.
7.
《Surface science》1989,219(3):L543-L550
The chemisorption of oxygen on the Si(111) surface has been studied by the ASED-MO method. Three steps of the initial oxidation process have been proposed. The first step is molecular oxygen chemisorption. The second step is that of dissociated oxygen chemisorption in which the atomic short bridge site (between the first layer and second layer silicon atoms) can be occupied only after the saturation of the dangling bonds of the surface silicon with oxygen. The third step is the diffusion of atomic oxygen from the short bridge positions into the bulk of silicon to form an SiO2 film. For molecular chemisorption, both the peroxy vertical and peroxy bridge models are possible although the peroxy vertical model is the more stable. The dissociated atomic oxygen can chemisorb for both the on-top and the short bridge models. Our results can explain, and are consistent with, most experimental results.  相似文献   

8.
The adsorption of CO on Cu(111) has been studied by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), electron energy loss spectroscopy (EELS), work function measurements and thermal desorption spectroscopy. Two LEED overlayers of CO on Cu(111) have been found: √3 × √3R30° and 73× √73R49.1°. Two different heats of adsorption were derived from thermal desorption spectra: 44.2 and 35.1 kj/mole. The isosteric heat of adsorption evaluated from work function measurements corresponds to the thermal desorption results. Energy losses due to CO adsorption have been found by means of EELS at 4.7, 7.7, and 13.8 eV.  相似文献   

9.
The chemisorption of ammonia on Ni(111) has been investigated using LEED, thermal desorption, and angle-resolved photoemission. For exposures at 200 K, thermal desorption shows a coverage-dependent binding energy associated with dipole-dipole interactions. A (2 × 2) LEED pattern occurs at 2–4 L exposure. Time dependence of the LEED pattern and changes in the thermal desorption induced by the LEED beam indicate that the (2 × 2) pattern is due to a stable intermediate decomposition species. Using synchrotron radiation photoemission all three valence orbitals of ammonia have been observed for the first time. The energies of the ammonia-induced features in the photoemission (?22.0, ?11.0 and ?6.7 eV below the Fermi energy) and the observed symmatries positively identify the absorbed species as molecular ammonia. Additional structure observed in the photoemission spectra after electron bombardment is associated with the stable adsorbed intermediate.  相似文献   

10.
The interaction of oxygen with Ag(111) has been studied over the pressure range 10?2?1.0 Torr. Thermal desorption measurements using isotopically labelled molecules unambiguously establish the presence of a stable chemisorbed dioxygen species which co-exists with adsorbed atomic oxygen. Dissolved oxygen undergoes exchange with the latter species but not with the former. The maximum dioxygen population is found to be markedly sensitive to gas dosing pressure; a model is proposed which accounts for these observations and for related observations on alkali-doped Ag. XP and UP spectral features can be correlated with the two types of oxygen species; angle-resolved XP and Auger spectra indicate that O2 (a) resides on the metal surface whereas O(a) is located within the surface. The XP spectra also suggest that in the case of O2(a) the molecular axis may lie perpendicular to the surface.  相似文献   

11.
Molecular oxygen adsorption on the Pt(111) surface is studied based on ab initio computations and thermodynamics. An O2 adsorption phase diagram is determined. There are two possible chemisorbed molecular states: one at a bridge site and another one at an fcc hollow site. While some population in the bridge sites persists at all coverages, the states coexist through the intermediate coverage phases. The relative coverage of the two species on the surface is determined by the competition between the Pt lattice distortion energy (that results from O2 adsorption) and the O2 repulsion energy. Our results give a reasonable explanation for the seemingly contradictory findings in previous experimental and theoretical work.  相似文献   

12.
The kinetics of O2 adsorption on a clean Pt(111) surface were investigated in the temperature range 214–400°C. The oxygen coverage was measured by CO titration as well as Auger electron spectroscopy both of which show the same dependence on O2 exposure. The initial sticking coefficient on clean Pt(111) is 0.08–0.10 and decreases exponentially with increasing oxygen coverage. For θ > 0.23 a (2 × 2)-O LEED pattern was observed. The highest oxygen coverage obtained was approximately 0.45. A theoretical model was proposed which correlates the coverage dependence of the sticking coefficient with adsorbate interactions in the chemisorbed state. These interactions cause a coverage dependent activation energy of adsorption assuming the existence of a precursor state. Experiments dealing with the effect of carbon contamination on the sticking coefficient showed that the initial sticking coefficient decreases with increasing carbon coverage.  相似文献   

13.
Oxygen adsorption on a Mo(111) surface is investigated at low pressures (10?7 to 10?5 Pa) and room temperature by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS). In agreement with previous studies it is established that the surface is not reconstructed during adsorption and the oxygen forms no ordered structures. On the basis of kinetic and spectroscopy data, the formation of two adsorption states on the surface within 1 monolayer is established. The valence band of a clean surface is studied in detail. An attempt is made to ascribe the peaks obtained to definite d states. The interaction between O2 and Mo(111) is discussed in terms of the results obtained and a comparison with the O2/W(111) system is made.  相似文献   

14.
The adsorption of oxygen on Rh(111) at 100 K has been studied by TDS, AES, and LEED. Oxygen adsorbs in a disordered state at 100 K and orders irreversibly into an apparent (2 × 2) surface structure upon heating to T? 150 K. The kinetics of this ordering process have been measured by monitoring the intensity of the oxygen (1, 12) LEED beam as a function of time with a Faraday cup collector. The kinetic data fit a model in which the rate of ordering of oxygen atoms is proportional to the square of the concentration of disordered species due to the nature of adparticle interactions in building up an island structure. The activation energy for ordering is 13.5 ± 0.5 kcalmole. At higher temperatures, the oxygen undergoes a two-step irreversible disordering (T? 280 K) and dissolution (T?400K) process. Formation of the high temperature disordered state is impeded at high oxygen coverages. Analysis of the oxygen thermal desorption data, assuming second order desorption kinetics, yields values of 56 ± 2 kcal/ mole and 2.5 ± 10?3 cm2 s?1 for the activation energy of desorption and the pre-exponential factor of the desorption rate coefficient, respectively, in the limit of zero coverage. At non-zero coverages the desorption data are complicated by contributions from multiple states. A value for the initial sticking probability of 0.2 was determined from Auger data at 100 K applying a mobile precursor model of adsorption.  相似文献   

15.
The interaction of the Cr(111) surface with O2 was studied by means of X-ray and UV photoemission and also work function measurements. A strong oxygen adsorption was found even at very low exposures, suggesting a high sticking coefficient. Previous treatments of the clean surface such as argon-ion bombardment or annealing result in significant changes of the surface structure reflected on work function and adsorption kinetics. No work function change was observed in the initial stage of adsorption, ruling out a model of chemisorption on top. In this range the sticking coefficient remains also constant, supporting a model of rapid regeneration of the genuine surface sites and incorporation of oxygen into the lattice. But in contrast with non transition metals like Cs or Sr, oxygen absorbed at room temperature in Cr, remains essentially in the topmost layers of the surface. At room temperature this initial stage of oxygen incorporation is followed by chemisorption on the corrosion film obtained when the uppermost layers are saturated with oxygen. The oxide layer has a stoichiometry close to Cr2O3 at saturation, but the detailed electronic structure depends on previous thermal treatments. Exposures at room temperature lead to a thin (about 9 Å), probably amorphous corrosion layer with a maximum work function change Δφ = +0.9 eV. Adsorption followed by heating at 500° C results in a much thicker corrosion film with a limiting work function decrease of Δφ = ?1.2 eV. The XP and UP spectra differ significantly in both cases and suggest a Fermi level shift of nearly 1 eV connected with oxygen adsorption on the Cr2O3 surface. The thickness of the corrosion film may be further increased by heating at 500°C in oxygen. The usual XPS spectra of bulk chromium sesquioxide are then clearly observed.  相似文献   

16.
Mechanism of the associative desorption of oxygen from the Pt(111) surface has been studied on atomic level by means of DFT/GGA calculations and kinetic Monte Carlo simulations. It has been found that two oxygen adatoms can occur, with sufficient probability, in neighboring on-top sites, which is essential for formation and subsequent evaporation of the oxygen molecule. Monte Carlo simulations have demonstrated effectiveness of this channel for O2 formation on Pt(111) and strongly support the suggested model of associative desorption from transition metal surfaces.  相似文献   

17.
Chemisorption of Au on Si(001) surface   总被引:1,自引:0,他引:1       下载免费PDF全文
The chemisorption of one monolayer of Au atoms on an ideal Si(001) surface is studied by using the self-consistent tight binding linear muffin-tin orbital method. Energies of the adsorption system of a Au atom on different sites are calculated. It is found that the most stable position is A site (top site) for the adsorbed Au atoms above the Si(001) surface. It is possible for the adsorbed Au atoms to sit below the Si(001) surface at the B_1 site(bridge site), resulting in a Au-Si mixed layer. This is in agreement with the experiment results. The layer projected density of states is calculated and compared with that of the clean surface. The charge transfer is also investigated.  相似文献   

18.
氧原子在Pt表面的吸附和扩散是理解氧化和腐蚀等问题的基础.基于密度泛函理论和周期平板模型研究了氧原子在Pt(111)表面及次表层的吸附,通过扫描隧道显微镜(STM)的理论计算分析了吸附的结构特征.采用CI-NEB方法讨论了氧原子在Pt(111)表面和次表层的扩散过程.研究结果表明氧原子在Pt(111)表面的扩散比较容易,而氧原子向次表层的扩散相对较难,这主要是因为次表层的扩散需要经过一个Pt原子层,必须克服一定的能垒,从而说明过渡金属Pt具有很强的抗氧化性.  相似文献   

19.
O在Au(111)表面吸附的密度泛函理论研究   总被引:1,自引:0,他引:1       下载免费PDF全文
应用密度泛函理论,本文系统地研究了O在Au(111)表面上的吸附能、吸附结构、功函数、电子密度和投影态密度,给出了覆盖度从0.11ML到1.0ML的范围内,O的吸附特性随覆盖度变化的规律.研究发现O的稳定吸附位为3重面心立方(fcc)洞位,O在fcc洞位的吸附能对覆盖度比较敏感,其值随着覆盖度的增加而减小;O诱导Au(111)表面功函数的变化量与覆盖度成近线性关系,原因是Au表面电子向O偏移,形成表面偶极子;O—Au的相互作用形成成键态和反键态,且反键态都被占据,造成O—Au键很弱,O吸附能较小. 关键词: 表面吸附 Au(111)表面 密度泛函理论 电子特性  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号