首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Electronic excitations on Cu(001) and Cu(001)c(2 × 2)-Cl have been investigated by angle-resolved electron energy loss spectroscopy at an angular resolution of Δθ = ±1° and an energy resolution of ΔE = 60 meV. Primary energies in the 50–100 eV range were chosen and the specular reflection was studied for angles 35° ? θ ? 71° with respect to the surface normal. The results are summarized as follows: The specular Cu(001) spectra are compared to optical data and good agreement is found for the energetic position of direct transitions. The electronic losses observed for the ordered overlayer system may be interpreted by one-electron excitations from occupied surface bands (known from angle-resolved photoemission results) into an empty band with a minimum energy at 0.4 eV above the Fermi level.  相似文献   

3.
Elastic low energy electron diffraction (LEED) intensity-energy (I-E) measurements for clean (001), (110), and (111) nickel surfaces were obtained at room temperature. Surface composition was monitored by Auger spectroscopy. I-E data from 15 to 220 eV were obtained at normal incidence for the non specular beams and for the specular beams at incidence angles from 4° to 20° on the 0° and 45° azimuths of (001), on the 0° and 90° azimuths of (110), and on the 0° azimuth of (111) nickel. Normalization of the data was performed electronically during data acquisition. Intensities were calibrated with the use of a shielded, biased Faraday collector. The effects of instrumental and experimental uncertainties were examined and minimized to obtain intensities accurate to ± 15 %, energy scales accurate to ± 0.35 eV, and incident and azimuthal angles accurate to ± 0.25° and ± 1.0° respectively.All nickel surfaces have I-E spectra which are characteristic of strong multiple scattering. Angular evolution features for (001) and (110) spectra may be correlated with intraplanar resonances associated with the onset of propagating beams. Only the (001) surfaces were found to have pronounced, sharp resonance features associated with surface barrier resonances and inelastic loss processes. Kinematic analysis of the Lorenzian-shaped I-E peaks on all surfaces in consistent with surface expansion using either an energy-dependent or a constant inner potential of 10.75 ± 0.5 eV. The widths of these same peaks on all surfaces were found to vary as E12 above 40 eV and E13 below.  相似文献   

4.
We compare the results of ab initio calculations with measured reflection anisotropy spectra and show that strongly bound surface-state excitons occur on the clean diamond (100) surface. These excitons are found to have a binding energy close to 1 eV, the strongest ever observed at a semiconductor surface. Important electron-hole interaction effects on the line shape of the optical transitions above the surface-state gap are also found.  相似文献   

5.
We have measured the surface photovoltage (SPV) of intrinsic (i.e., undoped) and phosphorus-doped amorphous Si : H between ?168 and 25°C in the spectral range from 0.5 to 2.5 eV. The a-Si : H was grown in a silane glow discharge. Vibrating Kelvin probe techniques were used for the SPV measurements; Auger spectroscopy was used for monitoring surface cleanliness and chemistry. At all temperatures and for both materials, (1) the SPV was invariably negative, (2) there was no correlation between the spectral, thermal and response-time properties of the SPV and the bulk photoconductivity, and (3) surface treatments such as sputtering and oxygen physisorption strongly affected the SPV but not the photoconductivity. These facts indicated that the SPV was due to the emptying of surface-states via surface transitions, and corresponded to the flattening of bands which, when unilluminated, were bent upwards. Intrinsic material showed a maximum SPV of about 0.2 V. The SPV was characterized at ?168°C by strong electronic isolation between surface-states and valence band (i.e., once light was removed, there was no surface-state refilling or decay of the SPV), slow rise times (~min), saturation at photon fluxes of about 1011/cm2 · s, and a SPV spectral threshold occurring at 0.7 eV. At 25°C, all SPV responses were much faster (<0.5 s) and the optical threshold was 0.9 eV. The thermal activation energies associated with the SPV were 0.11 eV for surface-state emptying and 0.22 eV for surface-state refilling. For P-doped material the maximum SPV at ?168°C was 0.3 V and its properties indicated less electronic isolation between surface-states and valence band. There was no SPV at room temperature. Our results are discussed in terms of an energy level scheme which contains a distribution of filled surface states isolated from both conduction and valence bands. The surface-state density is estimated to be about (1?2) × 1011/ cm2, a relatively low value which is consistent with the observed lack of Fermi level pinning. In both materials there is a very fast component of the SPV which suggests the presence of additional surface states below the valence band edge.  相似文献   

6.
郭龙婷  孙继忠  黄艳  刘升光  王德真 《物理学报》2013,62(22):227901-227901
采用分子动力学方法对低能(0.5–50.0 eV)氢粒子 与钨表面的相互作用进行了模拟研究.研究发现, 当氢粒子垂直入射, 能量为0.5–20.0 eV时, 粒子滞留在钨内部的概率急速增加, 在整个模拟能量区间内, 发生反射过程的概率逐渐减少, 但反射过程始终占主导. 改变粒子的入射角度, 在某些能量范围内滞留概率虽有所增加, 但氢原子被反射现象仍然占主导. 通过进一步观察低能氢粒子在钨块内的入射深度和能量变化, 计算出其在钨块中的能量沉积分布. 这些结果对理解聚变反应中 钨材料的选用优势以及氢或氢同位素滞留有重大意义. 此外, 在所研究的能量范围内, 分子动力学方法的模拟结果与以二体理论为基础的TRIM程序的模拟结果之间有明显差异, 说明传统的二体碰撞理论不能很好地描述低能碰撞问题. 关键词: 面向等离子体材料 分子动力学方法 钨 氢  相似文献   

7.
High resolution energy loss spectra of 4 eV electrons reflected in the specular direction from Ni(100) surface clean or covered by the ordered structures obtained in the different stages of the metal oxidation, are analysed with reference to LEED patterns. At room temperature, the successive p(2 × 2) and c(2 × 2) structures associated with the chemisorption of oxygen have been observed without modification of the energy loss spectra, in respect of the clean nickel surface. Surface phonons are known to occur in the case of the c(2 × 2)S ordered layer and their absence in the case of Ni-O corresponding system is discussed. After short exposures to oxygen between 200 to 500° C, the surface exhibits a so called “intermediate oxide”. It is identified by its hexagonal unit mesh (~5 Å) with two equivalent orientations along the [100] and [110] directions of the substrate and its vibrational spectra characterized by a loss peak at ? 112.5 meV (± 2.5 meV). Subsequent exposures to oxygen lead to the formation of the (100) face of NiO (in epitaxy on the Ni(100) face) accurately identified by its LEED pattern. The obtained typical multiple loss spectra with spacing 67.5 meV (± 15 meV) reveal a scattering of low energy electrons by long wavelength optical phonons associated to the oxide. The characteristic energy loss (67.5 meV) is in relative good agreement with the energy of the Fuchs-Kliewer surface phonon calculated from the optical constants of the nickel oxide.  相似文献   

8.
Measurements of the coefficient of elastic reflection of very low energy electrons at Cu(001), Cu(001) (2 × 4)45°O and Cu(001)c(2 × 2)N surfaces are reported. The measurements refer to normally-incident electrons with kinetic energies E in the range 0.5–22 eV. The elastic reflection coefficient Rel was determined from separate observations of the total reflection coefficient and of the energy distribution of reflected electrons. For Cu(001) Rel is 0.55 at E = 0.5 eV and drops monotonically to 0.03 with increasing E, the maximum slope being at E = 3 eV. Theoretical calculations of Rel are reported. The reflection amplitude of the substrate crystal was parameterized using existing results of accurate band structure calculations, and the surface scattering matrix was evaluated for assumed surface scattering potentials. It is shown that to fit the observed Rel it is necessary to take account of both the image potential and the extension of the imaginary part of the crystal scattering potential into vacuum. From the fit, the range of the imaginary potential is 1.0 Å. For Cu(001) (2 × 4)45°O and Cu(001)c(2 × 2)N the values of Rel at E = 0.5 eV were 0.35 and 0.15, respectively. The effect of adsorption in reducing Rel is especially marked for E < 2 eV. Adsorption of either O or N results in an additional peak in Rel near E = 12 eV.  相似文献   

9.
AlGaN layers with Al content varying over the whole range of compositions were grown by molecular beam epitaxy (MBE) on n-6H-SiC substrates. The band gap energy is obtained from the vanishing of Fabry–Pérot oscillations in a fit to optical reflection spectra near the band gap absorption edge. The surface potential was determined by in-situ X-ray photoemission spectroscopy (XPS) and is found to increase as a function of the Al content from (0.5±0.1) eV to (1.3±0.1) eV, from GaN to AlN. A Si3N4 thin passivation layer was formed in-situ onto a 2DEG AlGaN/GaN structure. The mechanism underlying the passivation of high electron mobility transistor (HEMT) structures is suggested to be based on the formation of interface states, which keep the Fermi level fixed at a position close to that of the free AlGaN surface. PACS 73.20.-r; 73.40.-c; 73.40.Kp  相似文献   

10.
Changes of LEED and work function were studied during hydrogen chemisorption on clean Si(001)-2 surfaces. The hydrogenation finally removes the reconstruction and causes a correlated decrease of the surface ionization energy by (0.34 ± 0.05) eV. This result proves the asymmetric dimer to be the building block of the Si(001) reconstruction since a partly ionic Si-H bond would increase the surface ionization energy.  相似文献   

11.
The Shelton retarding field method has been employed to determine the thermionic constants of the (100) surface of tantalum in the temperature range 1500 to 1730 K: φ* = = 4.16 ± 0.05 V, dφdT= 56 ± 5 μ V/K, and AR = 122 ± 26 A/cm2K2.φ = 4.24 ± 0.05 V at300 K. A refined analysis of the Shelton method shows the importance of four reflection coefficients, because of which, AR cannot be identified unambiguously as the preexponental constant appearing in the Richardson equation. The dependence on incident energy of the electron reflection coefficient of Ta(100) was observed in the range 0–100 eV. The positions at 4.5, 8.0, 11.3, and 17.0 eV of relative reflection maxima agree closely with those observed by others for W(100). Advances are described in instrumentation, in experimental technique, and in acquisition and analysis of data.  相似文献   

12.
External differential reflection measurements were carried out on clean Si(100) and (110) surfaces in the photon energy range of 1.0 to 3.0 eV at 300 and 80 K. The results for Si(100) at 300 K showed two peaks in the joint density of states curve, which sharpened at 80 K. One peak at 3.0 ± 0.2 eV can be attributed to optical transitions from a filled surface states band near the top of the valence band to empty bulk conduction band levels. The other peak at 1.60 ± 0.05 eV may be attributed to transitions to an empty surface states band in the energy gap. This result favours the asymmetric dimer model for the Si(100) surface. For the (110) surface at 300 K only one peak was found at 3.0 ± 0.2 eV. At 80 K the peak height diminished by a factor of two. Oxygen adsorption in the submonolayer region on the clean Si(100) surface appeared to proceed in a similar way as on the Si(111) 7 × 7 surface. For the Si(110) surface the kinetics of the adsorption process at 80 K deviated clearly. The binding state of oxygen on this surface at 80 K appeared to be different from that on the same surface at 300 K.  相似文献   

13.
The adsorption and diffusion of Pd monomers and dimers on the (001) surfaces of strongly correlated nickel oxides were investigated using density functional theory combined with the on-site Coulomb repulsion U. The results were compared with those of Pd on nonmagnetic MgO(001). For the Pd monomer, the most stable adsorption site was found to be near the surface O atom. The surface diffusion of the Pd monomer occurred by a hopping process over surface hollow sites. The diffusion energy barrier was 0.21 eV, which was lower than that for Pd on MgO(001). In the case of the Pd dimer, the smallest and stable cluster, the most stable adsorption structure had a flat geometry, with both Pd atoms sitting above the neighboring surface O atoms. The surface diffusion of the Pd dimer occurred by rotational and sliding processes, in contrast to that of the Pd dimer on MgO(001). The diffusion energy barriers ranged from 0.33 to 0.36 eV. The values for the surface diffusion of Pd dimers on NiO(001) were lower than those of Pd on MgO(001). This suggests that Pd dimers move more rapidly on NiO(001) than on MgO(001), and that the sintering of Pd clusters closely related to catalytic activities can occur more easily compared to that of Pd on MgO(001).  相似文献   

14.
The photoelectromagnetic effect of InP is studied in quantizing magnetic fields at 4·2 K in an energy range 1·4–1·5 eV for linearly polarized light. Depending on the sample surface condition two types of spectral oscillations may appear, those associated with interband transitions between Landau levels or the LO phonon type usually seen in photoconductivity. An analysis of the spectral oscillations gives: E0 = 1·423±0·001 eV; Δ0 = 0·102±0·006 eV; L = 0·036 eV.  相似文献   

15.
The driving force for the W(001) surface reconstruction and electronic structures of pristine and H-covered W(001) surfaces are studied by means of relativistic DFT calculations. The spin-orbit coupling leads to the splitting of the bands. Adsorbed physical monolayer of hydrogen due to forming adsorption bonds stabilizes the (1 × 1) structure of the H/W(001) surface. The performed calculations have not revealed any substantial nesting of Fermi surface, so do not support the Peierls-like charge-density-wave mechanism of the surface reconstruction. The total energy of the (√2 × √2)R45° W(001) surface structure is found to be lower, by 0.14 eV per atom, than for the (1 × 1 W(001). The dependence of the relative intensity of the characteristic LEED reflection on temperature, obtained with the help of Monte Carlo simulations using the interaction energies estimated from DFT calculations, is in good agreement with available experimental data, thus supporting the concept of the order-disorder type of the transition between the low-temperature ((√2 × √2)R45° and room-temperature (1 × 1) surface structures of W(001).  相似文献   

16.
The technique of the coincidence count rate at the peak of the angular correlation curve (CCR) in positron annihilation has been applied to the investigation of vacancy formation energies in thermal equilibrium in nickel, cobalt, and iron. The monovacancy formation energyE 1v/F has been determined to (1.55±0.05) eV and (1.34±0.07) eV for nickel and cobalt, and (1.60±0.10) eV for α-iron, and (1.40±0.15) eV for γ-iron, respectively. The structural phase transformations in cobalt (693 K) and iron (1183 K, 1663 K) are exhibited by discontinuities of the CCR. In the case of cobalt the CCR follows exactly the change of the thermal expansion at the transition temperature. The temperature dependence of the CCR in the prevacancy region is found to be proportional to the thermal expansion for all metals investigated.  相似文献   

17.
张治海  孙继忠  刘升光  王德真 《物理学报》2012,61(4):47901-047901
本文采用分子动力学方法研究了单一载能氢原子与石墨碰撞时氢原子被石墨反射、 吸附和石墨被氢原子穿透的发生系数以及碰撞中的能量传递机理. 研究发现: 与单层石墨相比, 多层石墨之间的长程相互作用增加了氢原子发生反射的能量范围, 尤其当入射能量大于20.0 eV时, 对反射过程的影响很明显; 当氢原子的入射能量大于25.0 eV时, 有一定的概率穿透四层石墨; 当氢原子入射能量高于28.0 eV时, 载能氢原子的能量传递给第二层石墨烯的比传递给第一层石墨烯的多. 这些结果对理解聚变反应中, 碳基材料的化学腐蚀及氚滞留有重要意义.  相似文献   

18.
Auger electron spectra have been recorded when oxygen is adsorbed on a Ni(111) single crystal surface. For the coverage range θ < 1, an analysis of the plot of the peak to peak height (H) of the oxygen KVV (516 eV) transition versus the total number of molecules cm2? impinging on the surface (molecular beam dosing) shows agreement with the kinetic mechanism proposed by Morgan and King [Surface Sci. 23 (1970) 259] for the adsorption of oxygen on polycrystalline nickel films. In this coverage range, no energy shifts of the nickel or oxygen Auger peaks were recorded.At coverages θ > 1 (standard dosing procedure) shifts in the valence spectra M2, 3VV (61 eV) and L3M2, 3V (782 eV) of ?2.3 eV and ?1.8eV respectively are recorded at 1.4 × 10?2 torr-sec. Up to these coverages no shift of the L3VV transition (849 eV) is observed. A chemical shift of ?2.1 eV is recorded in the L3M2, 3M2, 3 Auger transition (716 eV) at 1.4 × 10?2 torr-sec.In the coverage range θ > 1, shifts in the energy of the oxygen Auger peaks are observed. At 5.8 × 10?3 torr-sec. the KVV (516 eV) and KL1V (495.2 ± 0.3 eV) transitions show shifts of ?1.5 eV and ?(1.0 ±0.3) eV respectively. No shift up to this coverage is recorded in the KL1L1 (480.6 ± 0.3 eV) transition.  相似文献   

19.
The physical adsorption of octahedral SF6 on Ru(001) has been studied with X-ray photoelectron spectroscopy (XPS) in an attempt to see effects on the energy levels resulting from the conformation of the molecule on the surface. Near 80 K surface coverages up to a monolayer have been studied at various steady state pressures of SF6. Kinetic studies, core level binding energies, and peak areas indicate that the surface species studied was a physically adsorbed monolayer of sf6. The sticking coefficient of SF6, at ? 80 K is approximately unity. Also, a multilayer structure was observed at the highest pressures of SF6. The binding energy of the F(ls) peak for monolayer coverage is centered at 688.2 ± 0.2 eV relative to the Ru Fermi level. while the multilayer F(ls) peak is shifted more than 3.5 eV to higher binding energy. The F(ls) linewidth for one monolayer has a full width at half maximum of 1.75 ± 0.1 eV. The F(ls) linewidth of the multilayer peak narrows with increasing coverage. Its narrowest observed linewidth was 1.35 eV ± 0.1 eV or approximately the same as that found in the gas phase. One of the mechanisms which may account for the F(ls) linewidth with monolayer coverage is a difference in F(ls) binding energy between those F atoms in contact with the substrate and those further away. This may be due to the variation in chemical environment and relaxation effects as a function of distance from tlie substrate. A classical image force calculation including finite screening effects of the substrate indicates that there is a differential binding energy, ΔW. between the F ligands; ΔW = 0.85 ± 0.25 eV, for realistic ranges of adsorption distances from the substrate and screening lengths in the substrate. The observed broadening of the monolayer F(ls) level is consistent with a ΔW of 0.7 ± 0.1 eV, indicating the possible existence of such a mechanism. Adsorption of a monolayer of SF6 onto the Ru covered with a monolayer of oxygen shifts the F(ls) peak to lower binding energy by 0.8 eV. Similar effects due to oxygen have been observed previously in the physical adsorption of Xe on W(111).  相似文献   

20.
The motion of chemisorbed hydrogen on the Raney-nickel surface was studied by neutron inelastic spectroscopy. The peaks found at low energy transfers (below 320 cm?1) are nearly identical to the spectrum of lattice frequencies of pure nickel. This means that each hydrogen atom is bound to only one nickel atom. The mean square amplitude of the bound proton was found to exceed that of nickel by 0.04 ± 0.02 Å2. A broad band found at 1120 cm?1 (800 cm?1 in the case of deuterium) is attributed to motions of hydrogen atoms relative to the nickel surface. An interpretation of this band is given in terms of harmonic approximation. An analysis of the shape of the elastic line has shown that no broadening could be detected with our instrument. This leads to an upper limit for the diffusion constant of the protons, D<5×10?7 cm2/s, at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号