首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear saturation level Ws of the one-dimensional beam-plasma instability was calculated as a function of beam energy γ0 for all values of beam/plasma density ratio η. For η ? 0.01, Wsdecreases with increasing γ0.  相似文献   

2.
In this paper, the stability of a slender cantilever carrying a tip mass at its free end and subjected there to a follower force is investigated. The centroid of the tip mass is offset from the free end of the beam and is located along its extended axis. The associated boundary value problem is solved and the exact frequency equation is derived. The frequency equation is solved numerically for the case in which both the beam and the tip mass have circular cross-sections. The numerical computations indicate that the system loses stability only through flutter. The variation of the values of the critical flutter load Qcr with the tip mass offset parameter ξ is shown graphically for four values of the tip mass density to beam density ratio p. These calculations reveal that, at sufficiently small values of ξ, Qcr decreases sharply for increasing values of p. For values of ξ sufficiently large, however, the situation is reversed as the value of Qcr increases with increasing p.  相似文献   

3.
We consider the transverse characteristics of a Gaussian laser beam subject to a phase or amplitude clipping due to a pupil which is a π-plate or an opaque disc (stop). In particular, we consider the correlation between two features, the Strehl ratio and divergence angle, usually used for characterising the focusability of a diffracted beam. It is demonstrated that the Strehl ratio does not give systematically a global view, from a divergence point of view, on the transverse properties of a Gaussian beam suffering amplitude or phase diffraction. In addition, we consider the case of self-diffraction of a Gaussian beam upon a Gaussian phase aberration of same width, and it is found that the on-axis intensity describes correctly the whole diffracted beam cross-section, from a divergence point of view, only if the central phase shift is smaller than π. Another example showing that the focusability of a pure high-order Laguerre–Gauss TEMp0 beam, free from any clipping, cannot be correctly described by Strehl ratio is also considered.  相似文献   

4.
The epitaxial growth of AlxGa1-xAs on GaAs by the molecular beam vaporization method was investigated. The ratio of Al to Ga incorporated into the film was monitored by a mass spectrometer. Observations by reflection of high energy electron diffraction during growth and measurements of optical reflectivity suggest that it is possible to produce high quality AlxGa1-xAs single crystal thin films by the molecular beam method. Films grown with x varying from 0.1 to 0.47 were studied.  相似文献   

5.
Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v nF/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v nF is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.  相似文献   

6.
Biaxially textured yttria stabilized zirconia (0 0 1) thin films were fabricated on untextured hastelloy substrates by ion beam assisted deposition method. The effects of assisting beam current density Ja and sputtering beam current density Js on the textures of the films were studied. The results indicate that as Ja or Js increase, both the out-of-plane and the in-plane textures are improved initially, and then degrade. The results can be attributed to anisotropic damage and selective sputtering effect of assisting ions. At the same ion-to-atom arrival ratio r, which is reflected with Ja/Js value, lower deposition rate can enhance the biaxial texture.  相似文献   

7.
PbSe thin films on BaF2 (1 1 1) were grown by molecular beam epitaxy with different selenium beam flux. Evolution of PbSe surface morphologies with Se/PbSe beam flux ratio (Rf) has been studied by atomic force microscopy and high-resolution X-ray diffraction. Growth spirals with monolayer steps on PbSe surface are obtained using high beam flux ratio, Rf ≥ 0.6. As Rf decreases to 0.3, nano-scale triangle pits are formed on the surface and the surface of PbSe film changes to 3D islands when Rf = 0. Glide of threading dislocations in 〈1 1 0〉{1 0 0}-glide system and Pb-rich atom agglomerations are the formation mechanism of spiral steps and triangle pits. The nano-scale triangle pits formed on PbSe surface may render potential applications in nano technology.  相似文献   

8.
We present the final analysis of the nuclear effects on the cross section of dimuon production, using simultaneously a hydrogen and a platinum target in a 150, 200 and 280 GeV pion beam. For the dimuon mass interval 4.1 to 8.5 GeV, the ratio of the cross sections is in agreement with the Drell-Yan model within a 10% error, mainly due to systematics. The variation of this ratio with the dimuon mass, x1 and x2 is also in good agreement, and no variation with the transverse momentum is observed.  相似文献   

9.
We have measured the electron energy of the thermal group of electrons in both longitudinal and transverse electron beam created helium glow discharges. The measurement technique employs the ratio of intensities of spectral lines in the 2s3S?np3P He I series. Values of kTe between 0.07 and 0.11 eV were obtained. These energies are typical of the beam-generated electric field free plasmas. The competitive loss of helium ions by recombination and by charge transfer in a He?Hg electron beam created plasma is calculated. The results are applied to the Hg+ laser pumping scheme using a electron beam created He?Hg plasma.  相似文献   

10.
Based on the non-paraxial vectorial moment theory of beam propagation, the analytical expressions of the M2 factors for a non-paraxial hollow Gaussian beam (HGB) have been derived. The analytical formulae are further simplified for paraxial and highly non-paraxial cases. The beam waists, the divergence angles and the beam propagation factors are also depicted as functions of the parameter w0. The divergence angles will not exceed the maximum value of 90°. When w0 is within the scale of one time of light wavelength, the TE polarization results in the different beam propagation factors in the two transverse directions and the beam propagation factors first increase and then decrease. When w0 is large enough, the beam propagation factors are determined only by the beam order.  相似文献   

11.
In order to predict the glass forming ability of binary alloys produced by ion beam mixing, a two dimensional map is constructed. The two coordinates of this map are the ratio of atomic radii rA/rB, and the heat of formation ΔH of an equiatomic compound, calculated using Miedema's model. In this map, binary systems which form in the amorphous phase are clearly separated from the others. The same map is valid both for metal-metal and metal-semiconductor binaries.  相似文献   

12.
In this work, we investigate the evolution of a first order finite Olver beam and a zeroth order one (finite Airy beam) propagating in a right handed and double negative index cascaded slab system based on the transfer matrix and generalized Huygens-Fresnel integral equation. It is discovered that the incident finite Olver beam could reappear on the output cross section by using a periodic slab system with a negative index material as long as nl=??nr, L?=?R; for nl≠?nr, the bigger abs(nl) is, the longer the needed unit length L to achieve an original beam intensity reproduction, and vice versa; the relations between the negative refractive index and the double negative material unit length are also quantitative explored by using the Origin Lab. It is expected that the derived analytical formulae and conclusions can provide a convenient and effective way for studying the evolution of a finite Olver beam propagating in multilayered structures, especially for periodic and quasi-periodic slab systems.  相似文献   

13.
The closed-form expression for the mean-squared width of apertured partially coherent beams propagating through turbulent media is derived by using the integral transform technique. The influence of turbulence on the spreading of apertured partially coherent beams is studied quantitatively by examining the relative mean-squared width, which is defined as the ratio of the mean-squared width of an apertured partially coherent beam in turbulence to the mean-squared width of the same beam in free space. On the other hand, the range of turbulence-independent propagation, also a reasonable measure of the resistance of a beam to turbulence, is obtained by examining the mean-squared width. It is shown that the spreading of apertured partially coherent beams is less affected by turbulence with smaller truncation parameter δ and coherence parameter α than with larger δ and α. In addition, the influence of turbulence on the spreading of apertured partially coherent beams increases first and then decreases due to increasing waist width w0. The results obtained are explained physically.  相似文献   

14.
In this paper, propagation of a Gaussian laser beam through turbulent atmosphere is evaluated numerically. The beam quality factor for the propagated beam has been estimated for different turbulent conditions that are characterized by parameter Cn. The calculations show that the beam quality can be affected dramatically by atmospheric turbulence and the laser beam size and wavelength have major role in the results. Furthermore, the propagation of laser beam in longer distance results in more spatial perturbation of the beam. The results of these calculations and evaluation of beam quality factor M2 can be used for estimating the refractive index structure parameter (or atmosphere turbulent parameter) Cn.  相似文献   

15.
A two-dimensional electromagnetic Particle-in-Cell (PIC) simulation model is proposed to study the propagation of intense, ion beams with beaIn width wb small compared to the electron skin depth c/wpe through background plaslnas in tile presence of external applied magnetic fields. The effcctive eleetron gyrora,dius wge is found to be an important parameter for ion beam transport in the presence of magnetic fields,In the bealn regions, the background plasmas respond differently to the ion beanl of width wb〈wge and wb 〉 wge for the given magnetic field and beaan encrgy, For the case of beam width wb 〈 wge with relative weak external magnetic fiehts, the rotalion effects of plasma electrons a,re found to be signifieant and contributes to the signitica,nt enilaneeinent of the self electric and seif-magnetic fields. While for the ease of beam width wb 〉 wge with relative strong external magnetic fields, the rotation effects of plasma cleetrons are strongly inhibited and a, well neutraliza, tion of ion beam current can be found. Finally, the influences of diftiuent beam widths. beam energies and magnetic fields on the neutralization of ion bc, anl eurrellt are summarized for the eases of wb 〈 wge〈 c/wpe,wge 〈wb〈c/wbp and wb〈c/wpe〈wge.  相似文献   

16.
In the present work, we investigate the distributed regimes of an intense laser beam in a self-consistent plasma channel. As the intensity of the laser beam increases, the relativistic mass effect as well as the ponderomotive expulsion of electrons modifies the dielectric function of the medium due to which the medium exhibits nonlinearity. Based on Wentzel–Kramers–Brillouin and paraxial ray theory, the steady-state solution of an intense, Gaussian electromagnetic beam is studied. A differential equation of the beamwidth parameter with the distance of propagation is derived, including the effects of relativistic self-focusing (SF) and ponderomotive self-channeling. The nature of propagation and radial dynamics of the beam in plasma depend on the power, width of the beam, and Ω p, the ratio of plasma to wave frequency. For a given value of Ω p (<1), the distribution regimes have been obtained in beampower–beamwidth plane, characterizing the regimes of propagation as steady divergence, oscillatory divergence, and SF. The related focusing parameters are optimized introducing plasma density ramp function, and spot size of the laser beam is analyzed for inhomogeneous plasma. This results in overcoming the diffraction and guiding the laser beam over long distance. Numerical computations are performed for typical parameters of relativistic laser–plasma interaction studies.  相似文献   

17.
《Physics letters. A》1986,114(7):376-380
The diffusion of an ion beam caused by ion-acoustic turbulence is demonstrated experimentally by measuring the two-dimensional velocity distribution function fb(v, v). The obtained ratio between the perpendicular and the parallel diffusion coefficient D/D ≈ 21 is in reasonable agreement with three-dimensional quasi-linear theory.  相似文献   

18.
The analytical expressions for the effective Rayleigh range zR of Gaussian array beams in turbulence for both coherent and incoherent combinations are derived. It is shown that zR of Gaussian array beams propagating through atmospheric turbulence depends on the strength of turbulence, the array beam parameters and the type of beam combination. For the coherent combination zR decreases due to turbulence. However, for the incoherent combination there exists a maximum of zR as the strength of turbulence varies. The zR of coherently combined Gaussian array beams is larger than that of incoherently combined Gaussian array beams, but for the coherent combination case zR is more sensitive to turbulence than that for the incoherent combination case. The larger the beam number is, the longer zR is, and the more zR is affected by turbulence. For the coherent combination zR is not monotonic versus the relative beam separation distance, and the effect of turbulence on zR is appreciable within a certain range of the relative beam separation distance.  相似文献   

19.
The polarization-dependent gain, g0, and saturation energy density, Es, in a TE N2-laser amplifier were measured, using an oscillator-amplifier laser system for different amplifier electrode gap separations, dAMP, of 7, 9 and 4 mm and gas pressure of p = 77, 60, and 165 Torr, respectively. It was realized that for the amplifier with the gap separation of 7 and 9 mm, where the pdAMP-value has its optimum-value of 54 Torr cm, the gain-coefficient for the input beam with the polarization parallel to the discharge electrodes (P-polarized beam) is slightly higher than the case when the beam polarization is perpendicular to the discharge electrodes (S-polarized beam). In this case, the depolarization ratio for dAMP = 7 mm is the range of ∼0.998 to ∼0.962 as the input voltage increases from 12 to 15.5 kV, having a minimum of 0.937 around 14 kV. For the Es-parameter, the reversed order is true. Also, it was found that the saturation energy densities for three states of polarization are linearly related to the output energy densities, having different slopes of 0.11, 0.14, and 0.17 for R (randomly), P- and S-polarization, respectively. The present measurement supports qualitatively the prediction of polarization-inhomogeneity model for the stimulated emission cross-section, showing that randomly oriented dipoles exhibit slightly larger gain on the direction of the electric field.  相似文献   

20.
We propose a technique for analyzing the distribution function of the velocity components (radial V r and azimuthal V φ) of ions in a beam. This technique is used for studying the ion beam emerging from a stationary plasma thruster (SPT). It is shown that the beam contains ions with a radial velocity component in the range V r /V z = ? 1.2 to +0.74, as well as ions with the azimuthal velocity component in the range V ?/V z = ±0.9. Numerical calculations lead to the conclusion that ions acquire the azimuthal velocity component in the field of the azimuthal wave of the plasma potential evolving in the SPT channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号