首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electron impact induced desorption of H+ ions from hydrogen layers on thermally annealed polycrystalline tungsten ribbons has been investigated mass spectrometrically. In agreement with Benninghoven et al. (1972) and Madey (1973) the more strongly bound β2-state has been found to have a higher EID cross section than the more weakly bound β1-state. Ionic and total desorption cross sections have been measured at 100 eV; the obtained values agree with the lower values published to data, which suggests that the much higher values reported by some authors do not apply to pure hydrogen layers. The contributions of the different states have also been investigated using partial coverage with deuterium. The implications of the findings for the understanding of the adsorption states of hydrogen on tungsten and for the mechanism of EID are discussed.  相似文献   

2.
The adsorption of hydrogen on Pt (100) was investigated by utilizing LEED, Auger electron spectroscopy and flash desorption mass spectrometry. No new LEED structures were found during the adsorption of hydrogen. One desorption peak was detected by flash desorption with a desorption maximum at 160 °C. Quantitative evaluation of the flash desorption spectra yields a saturation coverage of 4.6 × 1014 atoms/cm2 at room temperature with an initial sticking probability of 0.17. Second order desorption kinetics was observed and a desorption energy of 15–16 kcal/mole has been deduced. The shapes of the flash desorption spectra are discussed in terms of lateral interactions in the adsorbate and of the existence of two substates at the surface. The reaction between hydrogen and oxygen on Pt (100) has been investigated by monitoring the reaction product H2O in a mass spectrometer. The temperature dependence of the reaction proved to be complex and different reaction mechanisms might be dominant at different temperatures. Oxygen excess in the gas phase inhibits the reaction by blocking reactive surface sites. At least two adsorption states of H2O have to be considered on Pt (100). Desorption from the prevailing low energy state occurs below room temperature. Flash desorption spectra of strongly bound H2O coadsorbed with hydrogen and oxygen have been obtained with desorption maxima at 190 °C and 340 °C.  相似文献   

3.
D. Lichtman 《Surface science》1983,125(2):490-498
Electron stimulated desorption from a hydrogen covered polycrystalline tungsten surface has been investigated. The H? and H+ desorption current as a function of incident electron energy was measured in both the low and high energy region. Some threshold-like structures appear in the curve of the desorption current versus incident electron energy; however, no threshold structures have been observed for H? desorption in the high energy region. The experimental results obtained and the desorption process are discussed in some detail, including initial excitation, charge transfer and ultimate desorption.  相似文献   

4.
Results on the isotope effect for total and ionic desorption cross sections in the electron impact desorption of various binding states of CO on the (110) plane of tungsten, and of oxygen on this plane are presented and discussed. It is shown that the observations allow a dissection of cross sections into excitation cross sections and escape probabilities, and that the latter can be used to estimate lifetimes of excited or ionic states. It is found that excitation cross sections for total desorption are of the order of 10?16–10?17 cm2, but seem to be significantly smaller in some cases for excitation to ionic states, suggesting that different excitations are involved. In all cases examined here the isotope effect for total desorption is much smaller than for ion production. This can be explained by the fact that ion lifetimes are somewhat shorter than those of excited neutrals. Lifetimes are estimated, in the cases examined, to be of the order of 10?14s.  相似文献   

5.
Results on the isotope effect for total and ionic desorption cross sections in the electron impact desorption of various binding states of CO on the (110) plane of tungsten, and of oxygen on this plane are presented and discussed. It is shown that the observations allow a dissection of cross sections into excitation cross sections and escape probabilities, and that the latter can be used to estimate lifetimes of excited or ionic states. It is found that excitation cross sections for total desorption are of the order of 10−16–10−17 cm2, but seem to be significantly smaller in some cases for excitation to ionic states, suggesting that different excitations are involved. In all cases examined here the isotope effect for total desorption is much smaller than for ion production. This can be explained by the fact that ion lifetimes are somewhat shorter than those of excited neutrals. Lifetimes are estimated, in the cases examined, to be of the order of 10−14s.  相似文献   

6.
《Surface science》1990,236(3):L372-L376
A new low temperature displacement mechanism for CO on the Pt(111) surface has been observed in the presence of high pressures of hydrogen (0.001 to 0.1 Torr H2). Temperature-programmed fluorescence yield near-edge spectroscopy (TP FYNES) was used to continuously monitor the CO coverage as a function of temperature both with and without hydrogen. For hydrogen pressures above 0.01 Torr, removal of CO begins at 130 K (Ed = 10.6 kcal/mol) instead of near the desorption temperature of 400 K (Ed = 26 kcal/mol). The large decrease in CO desorption energy appears to be caused by substantial repulsive interactions in the compressed monolayer induced by coadsorbed hydrogen. The new low temperature CO desorption channel appears to be caused by displacement of the compressed CO adlayer by coadsorbed hydrogen. In addition, the desorption activation energy for the main desorption channel of CO near 400 K is lowered by ~ 1 kcal/mol for hydrogen pressures in the 0.001 to 0.1 Torr range. These new results clearly emphasize the importance of in-situ methods capable of performing kinetic experiments at high pressures on well characterized adsorbed monolayers on single crystal surfaces. High coverages of coadsorbed hydrogen resulting from substantial overpressures may substantially modify desorption activation energies and thus coverages and kinetic pathways available even for strongly chemisorbed species. These phenomena may play an important role in surface reactions which occur at high pressure.  相似文献   

7.
The chemisorption of CO on W(100) at ~ 100K has been studied using a combination of flash desorption and electron stimulated desorption (ESD) techniques. This is an extension of a similar study made for CO adsorption on W(100) at temperatures in the range 200–300K. As in the 200–300 K CO layer, both α1-CO and α2-CO are formed in addition to more strongly bound CO species upon adsorption at ~ 100K; the α-CO states yield CO+ and O+ respectively upon ESD. At low CO coverages, the α1 and α2-CO states are postulated to convert to β-CO or other strongly bound CO species upon heating. At higher CO coverages, α1-CO converts to α2-CO upon thermal desorption or electron stimulated desorption. There is evidence for the presence of other weakly-bound states in the low temperature CO layer having low surface concentration at saturation. The ESD behavior of the CO layer coadsorbed with hydrogen on W(100) is reported, and it is found that H(ads) suppresses either the concentration or the ionic cross section for α1 and α2-CO states.  相似文献   

8.
The adsorption of CO on the (110) plane of tungsten has been studied using electron impact desorption, thermal desorption, and work function measurements in a single apparatus combining these various techniques. It is concluded that a single molecular adsorption state exists at 20–250 K (virgin-CO). At 300–400 K, 60% of the low temperature layer desorbs, the remainder converting principally to a beta-1 state, which has very small electron impact cross section; in addition to beta-1 an O+ yielding state, which we call beta-precursor is formed. The beta-1 state is stable to 900 K, where some desorption and conversion of the remaineder to a beta-2 state occurs. The O+ yielding state decays with increasing T and is gone at 800 K. Readsorption on beta-1 leads to two types of adsorption states called alpha and gamma, which seem to be site specific. Electron impact desorption yields mostly CO+ and CO for virgin, O+ for beta-precursor, and CO+ and CO for the readsorption states. There is no isotopic mixing in virgin or in readsorbed CO, nor does readsorbed CO exchange with beta-1 or beta precursor. There is complete isotopic mixing in beta desorption. In addition, massive EID creates another state, characterized by a large dipole moment, also yielding O+ in EID. This state can be converted to beta-1 by heating to 400 K. The total disappearance cross sections for the various states are virgin-CO5 × 10?17cm2; γ-CO 1.6 × 10?16cm2; α-CO 5 × 10?17cm2; β-precursor 6 × 10?18cm2and 1.2 × 10?19cm2; EID induced state 8 × 10?18cm2. In addition, cross sections for ion production are determined and found to be several orders of magnitude less than total disappearance cross sections. These results, and Leed and coverage data obtained in parallel investigations are used to formulate models of the various adsorption states. It is concluded that virgin and readsorbed CO are molecular and beta-precursor and beta dissociated, although strong interactions between C and O remain. The electron impact desorption of physisorbed CO was investigated and found to yield C+, O+, and neutral CO, but very little CO+. These results suggest primary dissociation of CO by electron impact, and desorption of neutral physisorbed CO by the energetic fragments. Physisorbed CO+, although undoubtedly created, lies on the attractive part of its potential curve relative to the surface, and thus does not desorb as CO+.  相似文献   

9.
Adsorption of hydrogen on polycrystalline palladium has been investigated using ESD techniques. Although a single thermal desorption peak is observed for H2 and Pd, total ESD cross section measurements suggest the existence of four distinct sources for desorbing H+ and H? species. The very large cross section associated with the H? signal along with its behavior during sample heating suggests the possible existence of a molecular precursor state.  相似文献   

10.
The importance of the excited states of Positronium (Ps) in the formation cross sections (both differential and total) of the negative hydrogen ion (H-) are investigated theoretically for the charge transfer reaction, Ps (n = 1, 2) + H ↦ e+ + H- for a wide range of incident energies (e.g., threshold – 500 eV). The calculations are performed in the frame work of a qualitative model, the post collisional Coulomb modified eikonal approximation (CMEA). A comparative study is also made between the capture from ground and excited states of the Ps. The present CMEA model takes account of higher order effects which is essential for a rearrangement process where the first Born type approximation (Coulomb Born for the ionic case) is not supposed to be adequate. At low incident energies, the excited states of Ps (2s, 2p) are found to play a dominant role in the H- formation cross sections. Significant deviations are noted between the present CMEA and the Coulomb Born (CBA) results even at very high incident energies (e.g., Ei = 500 eV), indicating the importance of higher order effects. At high incident energies the present CMEA differential cross section (DCS) exhibits a double peak structure which is totally absent in the CBA and could again be attributed to higher order effects.  相似文献   

11.
CO/W desorption spectra are characterized by an α state and multiple β states; using electron stimulated desorption (ESD) the α state was shown to comprise two sub-states, α1 and α2. In this paper the consecutive interactions of O2 and CO on W are investigated using ESD, flash desorption and field emission microscopy (FEM).Desorption spectra show that the α-CO state is displaced by O2, in two stages. The ESD probe provides an identification of the first stage with the removal of the α1-CO state, and energy analysis of ESD ions reveals a large energy shift (~ ? 1.5 eV) during O2 coadsorption which can be attributed to an incresae in the α1-CO WC bond length of ~ 0.15 Å. During this O2-induced displacement, the two β peaks converge into a single peak at the β1 position; this is ascribed to adatom interactions in the mixed O and C adlayer. Isotope exchange experiments with 28CO and 36O2 reveal (i) no exchange in the α-CO states, and (ii) complete exchange in the β-CO states, which is consistent with dissociative adsorption in the latter. The amount of coadsorbed O2 is estimated from these results, and from FEM data: a full monolayer of O adatoms can be coadsorbed on CO-saturated W, but CO pre-adsorption inhibits the formation of W oxides. The β1-O2 (ESD active) state also forms on the CO-covered surface: this state is identical in population, ESD cross section and ion energy distribution to β1-O2 on clean W, and retains its identity in the mixed layer (it does not undergo isotopic exchange). CO2 desorption spectra from the mixed layer were also characterised, complete isotopic scrambling being observed.Pre-exposure of tungsten to O2 inhibits CO adsorption: a monolayer of O2 is sufficient to prevent CO adsorption, and at low O2 coverages, every O2 molecule preadsorbed prevents one CO molecule from adsorbing. Isotopic exchange is again complete in the β states, and a lateral interaction model for desorption kinetics, based on dissociative adsorption in the β-CO state, quantitatively describes the CO desorption spectra.  相似文献   

12.
A UHV system, containing a beatable tungsten ribbon target (showing [100] planes), an ion source (Ar+, 2 keV) with mass separator, an electron source (300 eV), a quadrupole secondary ion mass filter, and a quadrupole gas analyzer is used for the study of the interaction of O2 with W (100) by simultaneous, i.e. fast interchanging, “static” SIMS (secondary [ion-induced] ion mass spectrometry) and EID (electron-induced [ion] desorption). Two different adsorptive binding states can be distinguished: β2 and β1. The O+ emission cross section under electron bombardment from the β2 state is smaller by a factor of about 103 than from β1 and is found to be temperature-dependent. After the state β2 has been saturated and before the occupation of β1 begins, an oxide formation process starts. This oxidation can be interpreted by a two-stage model.  相似文献   

13.
The coadsorption of CO and hydrogen on an Fe(100) surface was studied by temperature programmed desorption and X-ray photoelectron spectroscopy. It was found that CO adsorption blocked the subsequent dissociative adsorption of H2, although it did not seem to affect the hydrogen binding energy. Preadsorption of hydrogen was observed to reduce the binding energy of CO subsequently adsorbed and to inhibit the dissociation of CO. A new surface species was identified in a coadsorbed layer of CO and hydrogen. This species was evidenced by the formation of a desorption peak for H2 at 475 K when CO was adsorbed subsequent to H2 adsorption.  相似文献   

14.
D. Lichtman 《Surface science》1982,114(1):287-294
Electron-stimulated desorption of negative ions from oxygen covered tungsten and molybdenum has been investigated. The O? desorption current as a function of incident electron energy was measured. The following results were observed: (1) the threshold of negative ion desorption is much lower than that of positive ions (20–25 eV for O+; 4–5 eV for O?); (2) some resonant-like structures appear in the curves of desorption current as a function of electron energy in the low energy regions; these structures do not appear in the high energy regions; (3) these resonant-like structures are basically the same for O2-W and O2-Mo systems. Experimental results seem to indicate that the desorption of negative ions are essentially a feature of the absorbate and can be most readily explained based on potential energy curves for some electronic states of oxygen molecules and ions, and within the framework of the Franck-Condon principle.  相似文献   

15.
The chemisorption and reactivity of O2 and H2 with the sulfided Mo(100) surface and the basal (0001) plane of MoS2 have been studied by means of Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). These studies have been carried out at both low (10?8–10?5Torr) and high (1 atm) pressures of O2 and H2. Sulfur desorbs from Mo(100) both as an atom and as a diatomic molecule. Sulfur adsorbed on Mo(100) blocks sites of hydrogen adsorption without noticeably changing the hydrogen desorption energies. TDS of 18O coadsorbed with sulfur on the Mo(100) surface produced the desorption of SO at 1150 K, and of S, S2 and O, but not SO2. A pressure of 1 × 10?7 Torr of O2 was sufficient to remove sulfur from Mo(100) at temperatures over 1100 K. The basal plane of MoS2 was unreactive in the presence of 1 atm of O2 at temperatures of 520 K. Sputtering of the MoS2 produced a marked uptake of oxygen and the removal of sulfur under the same conditions.  相似文献   

16.
The adsorption and coadsorption of CO and H2 have been studied by means of thermal desorption (TD) and electron stimulated desorption (ESD) at temperatures ranging from 250 to 400 K. Three CO TD states, labelled as β2, β1, and β0 were detected after adsorption at 250 K. The population of β2 and β1 states which are the only ones observed upon adsorption at temperatures higher than 300 K was found to depend on adsorption temperature. The correlation between the binding states in the TD spectra and the ESD O+ and CO+ ions observed was discussed. Hydrogen is dissociatively adsorbed on Pd(111) and no ESD H+ signal was recorded following H2 adsorption on a clean Pd surface. The presence of CO was found to cause an appearance of a H+ ESD signal, a decrease of hydrogen surface population and an arisement of a broad H2 TD peak at about 450 K. An apparent influence of hydrogen on CO adsorption was detected at high hydrogen precoverages alone, leading to a decrease in the CO sticking coefficient and the relative population of CO β2 state. The coadsorption results were interpreted assuming mutual interaction between CO and H at low and medium CO coverages, the “cooperative” species being responsible for the H+ ESD signal. Besides, the presence of CO was proved to favour hydrogen penetration into the bulk even at high CO coverage when H atoms were completely displaced from the surface.  相似文献   

17.
Q.J. Zhang  R. Gomer 《Surface science》1981,109(3):567-573
The electron stimulated desorption of Xe adsorbed on the clean and on oxygen and CO covered tungsten (110) surfaces has been investigated. Only neutral Xe desorption was observed; for Xe on clean W a very small initial regime with cross section 10?17cm2 is followed by a slow decay with cross section 3×10?19cm2. The Xe yield varies nonlinearly with coverage, suggesting desorption from edges of islands or from sites with less than their full complement of nearest neighbor Xe atoms. Desorption from oxygen or CO covered surfaces results in an apparent desorption cross section identical to that of the underlying adsorbate. This results from a kicking off of Xe by electron desorbed O or CO. The true cross sections for these processes are ~10?14cm2 for Xe-0 and ~10?15 cm2 for Xe-CO. Some speculations about the mechanism, particularly the absence of ions are presented.  相似文献   

18.
The behavior of dimethyl methylphosphonate (DMMP), dosed at 100 K with and without coadsorbed water on oxidized iron has been examined by temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). Molecular and dissociated states of DMMP are readily distinguished by the P(LMM) Auger lineshape. At low coverages DMMP undergoes complete decomposition during heating, leaving carbon, phosphorus and oxygen residues on the surface. The major low temperature decomposition products are CH3OH, H2O, CO, H2 and a surface phosphate species. The DMMP decomposition is limited and large exposures lead to molecular DMMP desorption characteristics of multilayers (200–210 K). Pre-exposure to H2O increases the extent of DMMP decomposition.  相似文献   

19.
Measurements of both the absolute sticking probability near normal incidence and the coverage of H2 adsorbed on W(100) at ~ 300K have been made using a precision gas dosing system; a known fraction of the molecules entering the vacuum chamber struck the sample crystal before reaching a mass spectrometer detector. The initial sticking probability S0 for H2/W(100) is 0.51 ± 0.03; the hydrogen coverage extrapolated to S = 0 is 2.0 × 1015 atoms cm?2. The initial sticking probability S0 for D2/W(100) is 0.57 ± 0.03; the isotope effect for sticking probability is smaller than previously reported. Electron stimulated desorption (ESD) studies reveal that the low coverage β2 hydrogen state on W(100) yields H+ ions upon bombardment by 100 eV electrons; the ion desorption cross section is ~ 1.8 × 10?23 cm2. The H+ ion cross section at saturation hydrogen coverage when the β1 state is fully populated is ? 10?25 cm2. An isotope effect in electron stimulated desorption of H+ and D+ has been found. The H+ ion yield is ? 100 × greater than the D+ ion yield, in agreement with theory.  相似文献   

20.
The chemisorption of C2H2 and C2H4 on a clean or partly C- or O-covered Fe(111) surface was investigated with AES, TDS and HREELS. On the clean surface, both molecules adsorb under strong rehybridization close to sp3. Above 230 K, C2H2 reacts to form CH and presumably CH2 as the main products, which on further heating decompose to yield H2 desorption maxima at 580 and 490 K, leaving two carbon species on the surface which correspond to two loss peaks at 400 and 1290 cm?1 in the HREELS spectrum. C2H4 undergoes very rapid decomposition above 250 K; no intermediates have been detected. The presence of coadsorbed oxygen or carbon atoms only reduced the maximum uptake of C2H2, but led to the appearance of new molecular adsorption states of C2H4 and inhibited C2H4 decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号