首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poly(p‐phenylene sulfide) (PPS) nonisothermal cold‐crystallization behavior was investigated in a wide heating rate range. The techniques employed were the usual Differential Scanning Calorimetry (DSC), and the less conventional FT‐IR spectroscopy and Energy Dispersive X‐ray Diffraction (EDXD). The low heating rates (Φ) explored by EDXD (0.1 K min?1) and FT‐IR (0.5–10 K min?1) are contiguous and complementary to the DSC ones (5–30 K min?1). The crystallization temperature changes from 95 °C at Φ = 0.05 K min?1 to 130 °C at Φ = 30 K min?1. In such a wide temperature range the Kissinger model failed. The model is based on an Arrhenius temperature dependence of the crystallization rate and is widely employed to evaluate the activation energy of the crystallization process. The experimental results were satisfactorily fit by replacing in the Kissinger model the Arrhenius equation with the Vogel–Fulcher–Tamann function and fixing U* = 6.28 k J mol?1, the activation energy needed for the chains movements, according to Hoffmann. The temperature at which the polymer chains are motionless (T = 42 °C) was found by fitting the experimental data. It appears to be reasonable in the light of our previously reported isothermal crystallization results, which indicated T = 48 °C. Moreover, at the lower heating rate, mostly explored by FT‐IR, a secondary stepwise crystallization process was well evidenced. In first approximation, it contributes to about 17% of the crystallinity reached by the sample. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2725–2736, 2005  相似文献   

2.
A number of tetramethylammonium (TMA) iodides, including mono-, tri-, and pentaiodide, were synthesized. Thermal decomposition of samples was investigated by simultaneous TG–DSC analysis accompanied by gaseous IR- and mass-spectrometry analyses. Two different reaction pathways have been observed for TMA pentaiodide at different heating rates. At low heating rates (1–5 K min?1), a gradual mass loss takes place and a stability plateau due to monoiodide formation exists on TG curve. At high heating rates (10, 15 and 7 K min?1 as the in-between stage), there are only two peaks on DTG curve (instead of three for lower heating rates) and no monoiodide formation is observed as the sample decomposes completely before 350 °C.  相似文献   

3.
The thermal decomposition of sixteen metal sulfates was studied by thermogravimetry at heating rates of 2 and 5°C min?1 in flowing air and high-purity nitrogen. Their decomposition behaviors, especially the initial decomposition temperatures, were examined with relation to the thermodynamic functions for decomposition. Of the factors possibly influencing the decomposition temperature, the equilibrium SO3 pressures over the sulfates were evaluated: the equilibrium pressures at the initial temperatures for sulfates of metals, of which the oxidation state was unchanged during decomposition, were nearly equal to 1×10?4 atm at 2°C min?1 in flowing nitrogen.  相似文献   

4.
The kinetic of non-isothermal dehydration of equilibrium swollen poly(acrylic acid-co-methacrylic acid) hydrogel (PAM) has been investigated. Thermogravimetric and conversion dehydration curves were recorded at various heating rates 5–30 K min?1. The conversion dehydration curves at all investigated temperatures can be mathematically described using the logistic regression function in entire. It was found that activation energy complexly changes with the increasing dehydration degree. Physical meaning of the parameters of logistic function (b and w) is given. It was established that, during the dehydration, changes in the fluctuating hydrogel structure occur, and that limiting step on the kinetics of hydrogel dehydration have rate of structural rearrangement of hydrogel (actual relaxation mechanism). A procedure for determining the dependence of effective activation energy on temperature and dehydration degree, based on logistic function, is exposed. Possible explanation for the existence of negative values of activation energy in the certain range of temperature, is given.  相似文献   

5.
The aim of the work was to determine the effect of heating rate on initial decomposition temperature and phases of thermal decomposition of cellulose insulation. The activation energy of thermo‐oxidation of insulation was also determined. Individual samples were heated in the air flow in the thermal range of 100°C to 500°C at rates from 1.9°C min?1 to 20.1°C min?1. The initial temperatures of thermal decomposition ranged from 220°C to 320°C, depending on the heating rate. Three regions of thermal decomposition were observed. The maximum rates of mass loss were measured at the temperatures between 288°C and 362°C. The activation energies, which achieved average values between 75 and 80.7 kJ mol?1, were calculated from the obtained results by non‐isothermal, model‐free methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Pyrolysis of a wood chips mixture and main wood compounds such as hemicellulose, cellulose and lignin was investigated by thermogravimetry. The investigation was carried out in inert nitrogen atmosphere with temperatures ranging from 20°C to 900°C for four heating rates: 2 K min−1, 5 K min−1, 10 K min−1, and 15 K min−1. Hemicellulose, cellulose, and lignin were used as the main compounds of biomass. TGA and DTG temperature dependencies were evaluated. Decomposition processes proceed in three main stages: water evaporation, and active and passive pyrolysis. The decomposition of hemicellulose and cellulose takes place in the temperature range of 200–380°C and 250–380°C, while lignin decomposition seems to be ranging from 180°C up to 900°C. The isoconversional method was used to determine kinetic parameters such as activation energy and pre-exponential factor mainly in the stage of active pyrolysis and partially in the passive stage. It was found that, at the end of the decomposition process, the value of activation energy decreases. Reaction order does not have a significant influence on the process because of the high value of the pre-exponential factor. Obtained kinetic parameters were used to calculate simulated decompositions at different heating rates. Experimental data compared with the simulation ones were in good accordance at all heating rates. From the pyrolysis of hemicellulose, cellulose, and lignin it is clear that the decomposition process of wood is dependent on the composition and concentration of the main compounds.  相似文献   

7.
Activated sewage sludge samples obtained from two different waste water treatment plants were investigated by thermogravimetric analysis. Due to a very high content of water in the sludge samples, these had to be dried at 160°C in an electrical oven in order to remove all adsorbed water. To ensure pyrolysis conditions, nitrogen atmosphere was applied. The pyrolysis decomposition process was carried out in the temperature range from ambient temperature to 900°C at three different heating rates: 2 K min−1, 5 K min−1, 10 K min−1. TGA and DTG curves of the decomposition processes were obtained. Temperature of onset decomposition, final temperature of decomposition, maximum decomposition rate, and decomposition temperature were determined by thermogravimetric analysis for both sludge samples used. The main decomposition process takes place at temperatures in the range from 230°C to 500°C. Above this temperature, there are only small changes in the mass loss which are often attributed to the decomposition of carbonates present in the sewage sludge samples. To determine the apparent kinetic parameters such as the activation energy and the preexponential factor, the so called Friedman isoconversional method was used. Because of the requirements of this method, initial and final parts of the decomposition process, where crossings of the decomposition lines occurred, were cut off. Obtained dependencies of the apparent activation energies and preexponential factors as a function of conversion were used backwards to calculate the modeled decomposition process of sewage sludge and the experimental data were in good accordance with the data obtained by simulation.  相似文献   

8.

Zinc oxalate dihydrate has been synthesized by precipitation method and characterized by FT-IR, XRD and SEM-EDAX. The kinetics of dehydration and decomposition were studied by non-isothermal DSC technique in the N2 atmosphere at different heating rates: 4, 6, 8 and 10 K min?1. The product of thermal decomposition, ZnO has been characterized by UV, TEM, SEM-EDAX and XRD and found that the particles are in nanometer range. The activation energy for thermal dehydration and decomposition was calculated by various isoconversional methods. Furthermore, structure and reactivity of zinc oxalate have also been investigated using B3LYP/631+g (d, p) level of theory with the help of Gaussian 09W software. The theoretical investigation indicates that most probably the compound decomposes to ZnO along with the evolution of CO2 and CO.

  相似文献   

9.
The present article deals with the differential scanning calorimetric (DSC) study of Se?CTe glasses containing Sn. DSC runs are taken at four different heating rates (10, 15, 20 and 25?K?min?1). The crystallization data are examined in terms of modified Kissinger, Matusita equations, Mahadevan method and Augis and Bennett approximation for the non-isothermal crystallization. The activation energy for crystallization (E c) is evaluated from the data obtained at different heating rates. Activation energy of glass transition is calculated by Kissinger??s relation and Moynihan theory. The glass forming tendency is also calculated for each composition. The glass transition temperature and peak crystallization temperature increases with the increase in Sn % as well as with the heating rate.  相似文献   

10.
The thermal decomposition of iron sulphate hexahydrate was studied by thermogravimetry at a heating rate of 5°C min?1 in static air. The kinetic parameters were evaluated using the integral method by applying the Coats and Redfern approximation. The thermal stabilities of the hydrates were found to vary in the order. Fe2(SO4)3·6H2O → Fe2(SO4)3·4.5H2O → Fe2(SO4)3·0.5H2O The dehydration process of hydrated iron sulphate was found to conform to random nucleation mass loss kinetics, and the activation energies of the respective hydrates were 89.82, 105.04 and 172.62 kJ mol?1, respectively. The decomposition process of anhydrous iron sulphate occurs in the temperature region between 810 and 960 K with activation energies 526.52 kJ mol?1 for the D3 model or 256.05 kJ mol?1 for the R3 model.  相似文献   

11.
The thermal decomposition of CaCO3 was studied under high vacuum by means of both TG and the more recently developed constant decomposition rate thermal analysis (CRTA) which allows the monitoring of both reaction rate and the residual pressure over the sample. The reliability of the kinetic results seems to be much higher with the latter technique which actually allows the reduction of the reaction rate and therefore the heat and mass transfer effects over a broad range of sample size. For instance, it was necessary, by conventional TG started under a vacuum of 2 10?6 torr with a heating rate of 0.5 K min?1, to lower the amount of sample to 2 mg in order to obtain the same activation energy as that calculated from CRTA with various samples weighing up to 50 mg. The TG experimental conditions quoted above (and which are upper limits of mass and heating rate) are beyond the limit of sensitivity of most available conventional TG equipment.  相似文献   

12.
The aim of this work is to determine the activation energy for the thermal decomposition of poly(ethylene terephthalate)—PET, in the presence of a MCM-41 mesoporous catalyst. This material was synthesized by the hydrothermal method, using cetyltrimethylammonium as template. The PET sample has been submitted to thermal degradation alone and in presence of MCM-41 catalyst at a concentration of 25% in mass (MCM-41/PET). The degradation process was evaluated by thermogravimetry, at temperature range from 350 to 500 °C, under nitrogen atmosphere, with heating rates of 5, 10 and 25 °C min?1. From TG, the activation energy, determined using the Flynn–Wall kinetic method, decreased from 231 kJ mol?1, for the pure polymer (PET), to 195 kJ mol?1, in the presence of the material (MCM-41/PET), showing the catalyst efficiency for the polymer decomposition process.  相似文献   

13.
Thermal decomposition behavior and non‐isothermal decomposition reaction kinetics of nitrate ester plasticized polyether NEPE propellant containing ammonium dinitramide (ADN), which is one of the most important high energetic materials, were investigated by DSC, TG and DTG at 0.1 MPa. The results show that there are four exothermic peaks on DTG curves and four mass loss stages on TG curves at a heating rate of 2.5 K·min?1 under 0.1 MPa, and nitric ester evaporates and decomposes in the first stage, ADN decomposes in the second stage, nitrocellulose and cyclotrimethylenetrinitramine (RDX) decompose in the third stage, and ammonium perchlorate decomposes in the fourth stage. It was also found that the thermal decomposition processes of the NEPE propellant with ADN mainly have two mass loss stages with an increase in the heating rate, that is the result of the decomposition heats of the first two processes overlap each other and the mass content of ammonium perchlorate is very little which is not displayed in the fourth stage at the heating rate of 5, 10, and 20 K·min?1 probably. It was to be found that the exothermal peak temperatures increased with an increase in the heating rate. The reaction mechanism was random nucleation and then growth, and the process can be classified as chemical reaction. The kinetic equations of the main exothermal decomposition reaction can be expressed as: dα/dt=1012.77(3/2)(1?α)[?ln(1?α)]1/3 e?1.723×104/T. The critical temperatures of the thermal explosion (Tbe and Tbp) obtained from the onset temperature (Te) and the peak temperature (Tp) on the condition of β→0 are 461.41 and 458.02 K, respectively. Activation entropy (ΔS), activation enthalpy (ΔH), and Gibbs free energy (ΔG) of the decomposition reaction are ?7.02 J·mol?1·K?1, 126.19 kJ·mol?1, and 129.31 kJ·mol?1, respectively.  相似文献   

14.
The dehydration of lithium peroxide monohydrate was studied by derivatography under nonisothermic conditions for the calculation of main kinetic parameters in the temperature range 90–146°C. Experimental conditions (sample size and the linear heating rate) caused by thermoconductivity of the object under investigation were determined. It is shown that the process under study proceeds according to the kinetic law close to the first order one (n = 0.85±0.03). Values of the activation energy and the pre-exponential factor [E a = 86.0±0.8 kJ mol?1, k 0 = (2.19±0.16)×1011 min?1] were obtained. A suggestion was formulated that the dehydration mechanism of lithium peroxide monohydrate was analogous to that of the hydrates of the alkaline earth metal (calcium, barium, and strontium) peroxides.  相似文献   

15.
The pyrolysis of Seguruk asphaltite has been investigated using thermogravimetric analysis at atmospheric pressure between 293 to 1223 K at different linear heating rates of 5, 10 and 20 K min−1 under nitrogen as ambient gas. There was a two-stage thermal decomposition. Thermal decomposition started around 630 K for stage 1 for the slowest heating rate. On the other hand, for the same heating rate and stage 2, thermal decomposition started around 950 K. These values were shifted to higher temperatures with increasing heating rate. In this study, two different Coats-Redfern methods were applied to thermal degradation of Seguruk asphaltite.  相似文献   

16.
Differential scanning calorimetry (DSC) was used to examine the miscibility of polystyrene (PS), mol. wt. 105, with a phase-separated styrene-dimethylsiloxane (S-DMS) diblock copolymer, Mn = 3800, 86 wt% S. Mixtures whose S content varied from 4 to 96 wt% PS were examined at a 10 K min?1 heating rate following a 200 K min?1 cooling rate from temperatures varying from 403 to 573 K. At some compositions, two glass transition temperatures, Tgs, corresponding to PS transitions were observed; at others only a single Tg was observed. When it was assumed that the 200 K min?1 cooling rate corresponded to quenching from the starting temperature, and when the heat capacity changes at the S glass transitions were used to calculate the percentage of S repeat units undergoing each glass transition, it was possible to calculate an approximate partial phase diagram for this mixture. At 96 wt% PS, there was evidence for a small amount of mixed S phase, possibly block copolymer micelles, in equilibrium with PS; from about 60 to 90 wt% PS, the S repeat units from the block copolymer appeared to be completely mixed with the PS. At lower wt% PS, unmixed block copolymer was in equilibrium with block copolymer whose S segments were mixed with the PS. The phase diagram appeared to vary only slightly with temperature.  相似文献   

17.
The apparent specific heat of coal was measured by employing a computational calorimetric technique during continuous pyrolysis at heating rates of 10, 25 and 100°C min-1. For all of the examined heating rates, the apparent specific heat was found to be approximately 1.4 kJ kg-1 K-1 at room temperature. When the sample reached decomposition temperature (~410°C), the specific heat increased to 1.9 kJ kg-1 K-1. From this point, the apparent specific heat was greatly influenced by the coal reaction mechanism. For this purpose a detailed gas analysis was carried out for the three examined heating rates. It was found that with increased heating rates, the devolatilisation reactions were shifted to higher temperatures, as reflected in the measured apparent specific heat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The thermal decomposition of theophylline, theobromine, caffeine, diprophylline and aminophylline were evaluated by calorimetrical, thermoanalytical and computational methods. Calorimetrical studies have been performed with aid of a heat flux Mettler Toledo DSC system. 10 mg samples were encapsulated in a 40 μL flat-bottomed aluminium pans. Measurements in the temperature range form 20 to 400°C were carried out at a heating rate of 10 and 20°C min−1 under an air stream. It has been established that the values of melting points, heat of transitions and enthalpy for methylxanthines under study varied with the increasing of heating rate. Thermoanalytical studies have been followed by using of a derivatograph. 50, 100 and 200 mg samples of the studied compounds were heated in a static air atmosphere at a heating rate of 3, 5, 10 and 15°C min−1 up to the final temperature of 800°C. By DTA, TG and DTG methods the influence of heating rate and sample size on thermal destruction of the studied methylxanthines has been determined. For chemometric evaluation of thermoanalytical results the principal component analysis (PCA) was applied. This method revealed that first of all the heating rate influences on the results of thermal decomposition. The most advantageous results can be obtained taking into account sample masses and heating rates located in the central part of the two-dimensional PCA graph. As a result, similar data could be obtained for 100 mg samples heated at 10°C·min−1 and for 200 mg samples heated at 5°C min−1.  相似文献   

19.
Cold pressed linseed oil and paints prepared using the inorganic pigments; lead white and red lead, were characterized using non-isothermal differential scanning calorimetry (DSC) in an air atmosphere to determine the effect of the pigment on the oxidative polymerisation of the drying oil medium. For each paint sample, the onset temperature for oxidation was reduced from 166°C to the range 50 to 60°C when a heating rate of 5 K min-1 was used. In order to determine the rate of drying, the non-isothermal experiments were carried out using a range of heating rates. A change in the mechanism oxidative polymerization was observed as the heating rate was increased.  相似文献   

20.
Although the reaction products are unstable at the reaction temperatures, at a heating rate of 2 deg·min?1 ammonium peroxo vanadate, (NH4)4V2O11, decomposes to (NH4)[VO (O2)2 (NH3)] (above 93°C); this in turn decomposes to (NH4) [VO3 (NH3)] (above 106°C) and then to ammonium metavanadate (above 145°C). On further heating vanadium pentoxide is formed above 320°C. The first decomposition reaction occurs in a single step and the Avrami-Erofeev equation withn=2 fits the decomposition data best. An activation energy of 148.8 kJ·mol?1 and a ln(A) value of 42.2 are calculated for this reaction by the isothermal analysis method. An average value of 144 kJ·mol?1 is calculated for the first decomposition reaction using the dynamic heating data and the transformation-degree dependence of temperature at different heating rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号