首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical and dielectric properties of FeVO4 nanoparticles were studied at different temperatures from ambient to 200 °C. The samples were prepared by simple co-precipitation method using ferric nitrate and ammonium metavanadate as the starting precursors. The powder X-ray diffraction pattern inferred the single phase formation and triclinic structure of FeVO4. The morphology of the particles was elucidated from SEM studies. Detailed studies on the electrical and dielectric properties of the compound were carried out by using solid state impedance spectroscopy. A maximum dc conductivity of 4.65×10−5 S cm−1 was observed at the measuring temperature of 200 °C. The calculated activation energy from dc conductivity was found to be 0.28 eV. It was evident that the electrical transport process in the system was due to the hopping mechanism. The detailed dielectric studies were also carried out.  相似文献   

2.
The electrical conductivity and thermoelectric power of CuTlSe2 have been investigated as a function of temperature up to 230 °C above its melting point. In the liquid state the experimental data are analyzed in terms of a model developed for the density of states and electrical transport in solid amorphous semiconductors (Mott, 1970). Positive thermoelectric power suggests a large predominance of holes in electrical conduction. It appears that the conduction is due to holes in extended states near the band edge. It is found that the energy gap has a large temperature coefficient =5.5×10–4eV/K.  相似文献   

3.
The electrical properties of elastic alternating propylene-carbon monoxide copolymer (PCO-200) were investigated using the impedance spectroscopy technique. The results revealed a phase transition at about 70 °C where the material transforms from its insulating phase of conductivity in the order of 6×10−9 to about 9×10−5 (Ω m)−1, The second phase is characterized by temperature dependent electrical relaxation phenomena. The plot of the complex electric modulus and the complex impedance yields semicircles in the temperature range 70 up to 110 °C and a decreasing radius with increasing temperature. The activation energy was found to be in the order of 0.8 eV.  相似文献   

4.
Virendra Pratap  B K Verma 《Pramana》1978,10(2):173-177
Measurement of thermoelectric power Θ of pressed pellets of A-type Nd2O3 from 550 to 1180K and electrical conductivity (σ) at dc, 50 Hz, 1.542 kHz and 3 kHz at different temperatures is reported. It is concluded that electrical conduction at high temperature (T>600K) in this solid is due to positive large polarons in O2− : 2p (valence) band and negative intermediate polarons in Nd3+ : 5d (conduction band). The energy band gap of the solid has been found to be 2.44 eV. At low temperatures, conduction by hopping of charge carriers from one impurity centre to another has been predicted.  相似文献   

5.
This paper deals with the preparation of pure and ferric chloride (FeCl3) doped polyvinyl alcohol (PVA) films by solution casting method. Optical and electrical properties were systematically investigated. We have found the decrease in optical band gap energy of PVA films on doping FeCl3. The optical band gap energy values in the present work are found to be 3.10 eV for pure PVA, 2 eV for PVA:Fe3+ (5 mol%), 1.91 eV for PVA:Fe3+(15 mol%) and 1.8 eV for PVA:Fe3+(25 mol%). Direct current electrical conductivity (σ) of pure, FeCl3 doped PVA films in the temperature range 70-127 °C has been studied. At 387 K dc electrical conductivity of pure PVA film is 5.5795 μ Ω−1 cm−1, PVA:Fe3+ (5 mol%) film is 10.0936 μ Ω−1 cm−1 and γ-Irradiated PVA:Fe3+ (5 mol%) film for 900 CGY/min is 22.1950 μ Ω−1 cm−1. The result reveals the enhancement of the electrical conductivity with γ-irradiation. FT-IR study signifies the intermolecular hydrogen bonding between Fe3+ ions of FeCl3 with OH group of PVA.  相似文献   

6.
Structural, optical and electrical properties of CuIn5S8 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn5S8 thin films were carried out at substrate temperatures in the temperature range 100-300 °C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 °C and amorphous for the substrate temperatures below 200 °C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 105 cm−1 at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 250° C.  相似文献   

7.
The electrical property of a KTiOPO4 single crystal was studied by means of a dielectric spectroscopy method in the temperature range from −100 to 100 °C. Dielectric dispersion began at a temperature, TS=−80 °C. It is believed that this dielectric dispersion is related to the ionic hopping conduction, which arises mainly from the jumping of K+ ions. The activation energy concerned with hopping conduction is Ea∼0.20 eV above TS. TS=−80 °C can be the minimum temperature for the hopping K+ ion.  相似文献   

8.
The electrical conductivity of the solid phase Na2SO4(I) has been measured between the melting point at 884°C and the first order phase transition at about 240°C. The measurements have been performed using complex impedance measurements on pellet samples as well as on U-cells. The electrical conductivity is strongly dependent on sample at low temperatures and the activation energy ranges from 0.5 eV to 1.7 eV over the measured temperature range.  相似文献   

9.
Thermally stimulated current (TSC) measurements performed in the 100 K–400 K temperature range on Bi4Ti3O12 (BiT) thin films annealed at 550 °C and 700 °C had revealed two trapping levels having activation energies of 0.55 eV and 0.6 eV. The total trap concentration was estimated at 1015 cm−3 for the samples annealed at 550 °C and 3×1015 cm−3 for a 700 °C annealing and the trap capture cross-section was estimated about 10−18 cm2. From the temperature dependence of the dark current in the temperature range 20 °C–120 °C the conduction mechanism activation energy was found to be about 0.956–0.978 eV. The electrical conductivity depends not only on the sample annealing temperature but also whether the measurement is performed in vacuum or air. The results on the dark conductivity are discussed considering the influence of oxygen atoms and oxygen vacancies. Received: 28 January 1998 / Accepted: 8 January 1999 / Published online: 5 May 1999  相似文献   

10.
《Solid State Ionics》2006,177(37-38):3285-3296
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La0.6Sr0.4)0.99CoO3−δ (LSC40) and La0.85Sr0.15CoO3−δ (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described using the itinerant electron model. The electrical conductivity, σ, of the materials is high (σ > 500 S cm 1) in the measured temperature range (650–1000 °C) and oxygen partial pressure range (0.209–10 4 atm). At 900 °C the electrical conductivity is 1365 and 1491 S cm 1 in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40. Using electrical conductivity relaxation the chemical diffusion coefficient of oxygen was determined. It was found that accurate values of the chemical diffusion coefficient could only be obtained using a sample with a porous surface coating. The porous surface coating increased the surface exchange reaction thereby unmasking the chemical diffusion coefficient. The ionic conductivity deduced from electrical conductivity relaxation was determined to be 0.45 S cm 1 and 0.01 S cm 1 at 1000 and 650 °C, respectively. The activation energy for the ionic conductivity at a constant vacancy concentration (δ = 0.125) was found to be 0.90 eV.  相似文献   

11.
This study investigated the effect of deposition temperature on the morphological, optical, electrical and opto-electrical properties of CdO:Ga films prepared by a cost effective spray pyrolysis deposition method. The substrate temperature was varied from 275 to 375 °C, in steps of 25 °C. The XRD patterns reveal that films are polycrystalline with cubic structure and are highly textured along (2 0 0) preferential orientation. The crystallinity and crystallite size increases with deposition temperature. The SEM images confirmed these results and showed larger grains and more crystallization for the higher deposition temperature. The electrical studies show degenerate, n-type semiconductor nature with minimum resistivity of 1.93 × 10−4 Ω cm. Temperature dependence of electrical conductivity shows a semiconducting behavior with a spectrum of activation energy. The electrical conductivity of the film dependence of temperature shows the thermally activated band conduction mechanism. The optical gap varies from 2.54 to 2.74 eV. The highest figure of merit observed in the present study is 9.58 × 10−3 Ω−1 and shows improvement than our previous reports. The blue shift of absorption edge (or bandgap widening BGW) can be described by the Moss-Burstein (M-B) effect in which the optical absorption edge of a degenerate n-type semiconductor is shifted towards higher energy.  相似文献   

12.
The electrical conductivity and thermoelectric power of AgTlSe2 have been investigated as a function of temperature from 390° C up to 590° C. The experimental data are analyzed in terms of a model developed for the density of states and electrical transport in solid amorphous semiconductors [12]. Positive thermoelectric power suggests a large predominance of holes in electrical conduction. It appears that the conduction is due to holes in localized states near the band edge.  相似文献   

13.
ZnS/MnS super lattice thin films were grown on glass substrates by Chemical Bath Deposition technique. Equimolar aqueous solutions of ZnCl2:thiourea and MnCl2·2H2O:thiourea were taken separately. The substrates were placed vertically in the beakers containing the precursor described above, and the films are deposited at 85 °C for an hour. The as deposited films are annealed at 200 °C for about two hours. X-ray diffractometry method was used to obtain structural characterization. The UV–vis absorption spectrometry was employed to find the optical properties. The refractive-index, dielectric constant, optical conductivity, electrical conductivity and extinction coefficient were determined by various equations based on the data. The valence band and conduction band offset voltages for ZnS/MnS were determined as 0.7 eV and 0.1 eV respectively and for MnS/ZnS were 0.4 eV and 0.3 eV respectively. The band alignment of both superlattice was found to be as Type I.  相似文献   

14.
DC electrical conductivity for a virgin and poled annealed (NH4)2ZnCl4b-axis single crystal shows a defect controlled property. A Schottky mechanism is a probable mechanism of conduction in regions of strong structural transitions. The rise of conductivity in the incommensurate and paraelectric phases is linked to an increase in discommensurations density. The activation energies (ΔE) in the three phases region were calculated. DTA measurements shows that the crystal is stable up to 200 °C and the phase transition temperatures were observed at 42, 94.8 and 137 °C. The effective activation energy (Ee) was obtained using Kissinger and Mahadevan equations. It was found to be equal to 0.49 eV. This correlates with the value obtained through DC conductivity.  相似文献   

15.
《Solid State Ionics》2006,177(19-25):1883-1886
We have carried out the electrical conductivity and NMR measurements and investigated the characteristic features of the electrical conductivity in a paraelastic phase of Tl2SeO4. It was found from electrical conductivity measurement that the activation energy in the paraelastic phase (above Tc(= 661 K)) is 0.98 eV. We also found that 205Tl-NMR line width drastically decreases above Tc and becomes approximately 0.5 Gauss. This result indicates that in the paraelastic phase the mobile Tl ions exist. Moreover this result is consistent with the existence of the anomalously large hopping motion of Tl ions observed in X-ray diffraction measurement. Furthermore the activation energy estimated from the motional narrowing of 205Tl-NMR absorption line is 0.92 eV and is in agreement with that obtained from the conductivity measurement. From these results, it is deduced that the mobile Tl ions play an important role in the appearance of electrical conductivity in the paraelastic phase.  相似文献   

16.
A relatively thick (i.e., ∼9 nm) SiO2 layer can be formed by oxidation of Si with nitric acid (HNO3) vapor below 500 °C. In spite of the low temperature formation, the leakage current density flowing through the SiO2 layer is considerably low, and it follows the Fowler-Nordheim mechanism. From the Fowler-Nordheim plots, the conduction band offset energy at the SiO2/Si interface is determined to be 2.57 and 2.21 eV for HNO3 vapor oxidation at 500 and 350 °C, respectively. From X-ray photoelectron spectroscopy measurements, the valence band offset energy is estimated to be 4.80 and 4.48 eV, respectively, for 500 and 350 °C oxidation. The band-gap energy of the SiO2 layer formed at 500 °C (8.39 eV) is 0.68 eV larger than that formed at 350 °C. The higher band-gap energy for 500 °C oxidation is mainly attributable to the higher atomic density of the SiO2 layer of 2.46 × 1022/cm3. Another reason may be the absence of SiO2 trap-states.  相似文献   

17.
The electrical conductivity of polycrystalline magnesite (MgCO3) was measured at 3-6 GPa at high temperatures using complex impedance spectroscopy in a multi-anvil high-pressure apparatus. The electrical conductivity increased with increasing pressure. The activation enthalpy calculated in the temperature range 650-1000 K also increased with increasing pressure. The effect of pressure was interpreted as being the activation volume in the Arrhenius equation, and the fitted data gave an activation energy and volume of 1.76±0.03 eV and −3.95±0.78 cm3/mole, respectively. The negative activation volume and relatively large activation energy observed in this study suggests that the hopping of large polarons is the dominant mechanism for the electrical conductivity over the pressure and temperature range investigated.  相似文献   

18.
Films of the composition Ge40S60 have been studied in the temperature range of 313–423 K for electrical conductivity, and 293–373 K for thermal conductivity. The dc conductivity results indicate a single value activation energy of 0.863 eV for the conductivity in the applied temperature range. The thermal conductivity coefficient increases linearly with temperature at a thickness of d=0.311 cm. It was found that the investigated samples show a memory effect. The threshold switching voltage was found to increase linearly with film thickness. Moreover, the threshold voltage decreases exponentially with temperature. The data are analysed using a thermal model for the switching process.  相似文献   

19.
Different mixed iron-cobalt molybdates Co1−xFexMoO4 (0 < x ≤ 1) were prepared by means of a ceramic process. The influence of the isostructural substitution of Co2+ by Fe2+ and Fe3+ on the electrical conductivity of CoMoO4 was studied in the temperature range (50–600°C). The results show that the iron substitution increases the electrical conductivity and changes the conduction mechanism of CoMoO4. From a band conduction mechanism with an activation energy higher than 0.8 eV the conduction mode transforms into a hopping mechanism between the Fe2+ and Fe3+ ions in the octahedrally coordinated divalent cation sublattice. The activation energy is lower (0.4 eV) and does not alter around the polymorphic transition temperature. Owing to careful oxidations of the samples into cation deficient phases it was shown that the conductivity is proportional to the [Fe2+]/[Fe3+] ratio. These mild oxidations confirm the hopping mechanism. The presence of Co2+/Co3+ pairs has a minor contribution to the overall conductivity process. Paper presented at the 2nd Euroconference, Funchal, Madeira, Portugal, 10 – 16 Sept. 1995  相似文献   

20.
In this study, the electrical, dielectric and morphological analysis of composite solid polymer electrolytes containing polyethylene oxide, alumina nano-fillers and tetrapropylammonium iodide are conducted. The temperature dependence of conductivity shows activation energy of 0.23, 0.20 and 0.29 eV for electrolytes containing 0, 5 and 15 wt.% alumina, respectively, when data fitted to the Arrhenius equation. These activation energy values are in good agreement with those determined from dielectric measurements. The result confirms the fact that conductivity is activated by both the mobility and the charge carrier density. The conductivity isotherms demonstrated the existence of two peaks, at 5 and 15 wt.% Al2O3 composition. The highest conductivity values of 2.4 × 10?4, 3.3 × 10?4 and 4.2 × 10?4 S cm?1 are obtained for the sample with 5 wt.% Al2O3 at 0, 12 and 24 °C, respectively, suggesting an enhancement of conductivity compared with that of alumina free samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号