首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Roy Joshua 《K-Theory》2002,27(3):197-244
This is the second part of our work on the intersection theory of algebraic stacks. The main results here are the following. We provide an intersection pairing for all smooth Artin stacks (locally of finite type over a field) which we show reduces to the known intersection pairing on the Chow groups of smooth Deligne–Mumford stacks of finite type over a field as well as on the Chow groups of quotient stacks associated to actions of linear algebraic groups on smooth quasi-projective schemes modulo torsion. The former involves also showing the existence of Adams operations on the rational étale K-theory of all smooth Deligne–Mumford stacks of finite type over a field. In addition, we show that our definition of the higher Chow groups is intrinsic to the stack for all smooth stacks and also stacks of finite type over the given field. Next we establish the existence of Chern classes and Chern character for Artin stacks with values in our Chow groups and extend these to higher Chern classes and a higher Chern character for perfect complexes on an algebraic stack, taking values in cohomology theories of algebraic stacks that are defined with respect to complexes of sheaves on a big smooth site. As a by-product of our techniques we also provide an extension of higher intersection theory to all schemes locally of finite type over a field. As the higher cycle complex, by itself, is a bit difficult to handle, the stronger results like contravariance for arbitrary maps between smooth stacks and the intersection pairing for smooth stacks are established by comparison with motivic cohomology.  相似文献   

2.
P Hu 《Advances in Mathematics》2004,189(2):325-412
In this paper, we use conformal field theory to construct a generalized cohomology theory which has some properties of elliptic cohomology theory which was some properties of elliptic cohomology. A part of our presentation is a rigorous definition of conformal field theory following Segal's axioms, and some examples, such as lattice theories associated with a unimodular even lattice. We also include certain examples and formulate conjectures on modular forms and Monstrous Moonshine related to the present work.  相似文献   

3.
We present a geometric construction of push-forward maps along projective morphisms for cohomology theories representable in the stable motivic homotopy category assuming that the element corresponding to the stable Hopf map is inverted in the coefficient ring of the theory. The construction is parallel to the one given by Nenashev for derived Witt groups. Along the way we introduce cohomology groups twisted by a formal difference of vector bundles as cohomology groups of a certain Thom space and compute twisted cohomology groups of projective spaces.  相似文献   

4.
Complexes of discrete distributional differential forms are introduced into finite element exterior calculus. Thus, we generalize a notion of Braess and Schöberl, originally studied for a posteriori error estimation. We construct isomorphisms between the simplicial homology groups of the triangulation, the discrete harmonic forms of the finite element complex, and the harmonic forms of the distributional finite element complexes. As an application, we prove that the complexes of finite element exterior calculus have cohomology groups isomorphic to the de Rham cohomology, including the case of partial boundary conditions. Poincaré–Friedrichs-type inequalities will be studied in a subsequent contribution.  相似文献   

5.
In recent publications, we have defined complexes of differential forms on analytic spaces which are resolutions of the constant sheaf. These complexes were used to prove the existence of a mixed Hodge structure on the cohomology of analytic spaces which possess kählerian hypercoverings, in particular, projective algebraic varieties. We define an exterior product on these forms, which induces the cup product on the cohomology of analytic spaces. The main difficulty is to prove that this exterior product is functorial with respect to morphisms of analytic spaces. This exterior product can be used to prove that the cup product is compatible with the mixed Hodge structure on the cohomology.  相似文献   

6.

The integer cohomology algebra of the complement of a complex subspace arrangement with geometric intersection lattice is completely determined by the combinatorial data of the arrangement. We give a combinatorial presentation of the cohomology algebra in the spirit of the Orlik-Solomon result on the cohomology algebras of complex hyperplane arrangements. Our methods are elementary: we work with simplicial models for the complements that are induced by combinatorial stratifications of complex space. We describe simplicial cochains that generate the cohomology. Among them we distinguish a linear basis, study cup product multiplication, and derive an algebra presentation in terms of generators and relations.

  相似文献   


7.
We define and study a notion of Gorenstein projective dimension for complexes of left modules over associative rings. For complexes of finite Gorenstein projective dimension we define and study a Tate cohomology theory. Tate cohomology groups have a natural transformation to classical Ext groups. In the case of module arguments, we show that these maps fit into a long exact sequence, where every third term is a relative cohomology group defined for left modules of finite Gorenstein projective dimension.

  相似文献   


8.
In this paper, various difference schemes with oblique stencils, i.e., schemes using different space grids at different time levels, are studied. Such schemes may be useful in solving boundary value problems with moving boundaries, regular grids of a non-standard structure (for example, triangular or cellular ones), and adaptive methods. To study the stability of finite difference schemes with oblique stencils, we analyze the first differential approximation and dispersion. We study stability conditions as constraints on the geometric locations of stencil elements with respect to characteristics of the equation. We compare our results with a geometric interpretation of the stability of some classical schemes. The paper also presents generalized oblique schemes for a quasilinear equation of transport and the results of numerical experiments with these schemes.  相似文献   

9.
We introduce two Hopf algebroids associated to a proper and holomorphic Lie group action on a complex manifold. We prove that the cyclic cohomology of each Hopf algebroid is equal to the Dolbeault cohomology of invariant differential forms. When the action is cocompact, we develop a generalized complex Hodge theory for the Dolbeault cohomology of invariant differential forms. We prove that every cyclic cohomology class of these two Hopf algebroids can be represented by a generalized harmonic form. This implies that the space of cyclic cohomology of each Hopf algebroid is finite dimensional. As an application of the techniques developed in this paper, we generalize the Serre duality and prove a Kodaira type vanishing theorem.  相似文献   

10.
11.
Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed complexes, nonabelian chain homotopies between them and similar higher homotopies. The tensor product involves non-abelian constructions related to the commutator calculus and the homotopy addition lemma. This monoidal closed structure is derived from that on the equivalent category of ω-groupoids where the underlying cubical structure gives geometrically natural definitions of tensor products and homotopies.  相似文献   

12.
We study the cohomology of a compact locally symmetric space attached to an arithmetic subgroup of a rational form of a group of type G 2 with values in a finite dimensional irreducible representation E of G 2. By constructing suitable geometric cycles and parallel sections of the bundle [(E)\tilde]{\tilde{E}} we prove non-vanishing results for this cohomology. We prove all possible non-vanishing results compatible with the known vanishing theorems regarding unitary representations with non-zero cohomology in the case of the short fundamental weight of G 2. A decisive tool in our approach is a formula for the intersection numbers with local coefficients of two geometric cycles.  相似文献   

13.
Roy Joshua 《K-Theory》2002,27(2):133-195
In this paper and the sequel we establish a theory of Chow groups and higher Chow groups on algebraic stacks locally of finite type over a field and establish their basic properties. This includes algebraic stacks in the sense of Deligne–Mumford as well as Artin. An intrinsic difference between our approach and earlier approaches is that the higher Chow groups of Bloch enter into our theory early on and depends heavily on his fundamental work. Our theory may be more appropriately called the (Lichtenbaum) motivic homology and cohomology of algebraic stacks. One of the main themes of these papers is that such a motivic homology does provide a reasonable intersection theory for algebraic stacks (of finite type over a field), with several key properties holding integrally and extending to stacks locally of finite type. While several important properties of our higher Chow groups, like covariance for projective representable maps (that factor as the composition of a closed immersion into the projective space associated to a locally free coherent sheaf and the obvious projection), an intersection pairing and contravariant functoriality for all smooth algebraic stacks, are shown to hold integrally, our theory works best with rational coefficients.The main results of Part I are the following. The higher Chow groups are defined in general with respect to an atlas, but are shown to be independent of the choice of the atlas for smooth stacks if one uses finite coefficients with torsion prime to the characteristics or in general for Deligne–Mumford stacks. (Using some results on motivic cohomology, we extend this integrally to all smooth algebraic stacks in Part II.) Using cohomological descent, we extend Bloch's fundamental localization sequence for quasi-projective schemes to long exact localization sequences of the higher Chow groups modulo torsion for all Artin stacks: this is one of the main results of the paper. We show that these higher Chow groups modulo torsion are covariant for all proper representable maps between stacks of finite type while being contravariant for all representable flat maps and, in Part II, that they are independent of the choice of an atlas for all stacks of finite type over the given field k. The comparison with motivic cohomology, as is worked out in Part II, enables us to provide an explicit comparison of our theory for quotient stacks associated to actions of linear algebraic groups on quasi-projective schemes with the corresponding Totaro–Edidin–Graham equivariant intersection theory. As an application of our theory we compute the higher Chow groups of Deligne–Mumford stacks and show that they are isomorphic modulo torsion to the higher Chow groups of their coarse moduli spaces. As a by-product of our theory we also produce localization sequences in (integral) higher Chow groups for all schemes locally of finite type over a field: these higher Chow groups are defined as the Zariski hypercohomology with respect to the cycle complex.  相似文献   

14.
We study local cohomology of rings of global sections of sheafs on the Alexandrov space of a partially ordered set. We give a criterion for a splitting of the local cohomology groups into summands determined by the cohomology of the poset and the local cohomology of the stalks. The face ring of a rational pointed fan can be considered as the ring of global sections of a flasque sheaf on the face poset of the fan. Thus we obtain a decomposition of the local cohomology of such face rings. Since the Stanley-Reisner ring of a simplicial complex is the face ring of a rational pointed fan, our main result can be interpreted as a generalization of Hochster's decomposition of local cohomology of Stanley-Reisner rings.  相似文献   

15.
We show that the number of rational points of a subgroup inside a toric variety over a finite field defined by a homogeneous lattice ideal can be computed via Smith normal form of the matrix whose columns constitute a basis of the lattice. This generalizes and yields a concise toric geometric proof of the same fact proven purely algebraically by Lopez and Villarreal for the case of a projective space and a standard homogeneous lattice ideal of dimension one. We also prove a Nullstellensatz type theorem over a finite field establishing a one to one correspondence between subgroups of the dense split torus and certain homogeneous lattice ideals. As application, we compute the main parameters of generalized toric codes on subgroups of the torus of Hirzebruch surfaces, generalizing the existing literature.  相似文献   

16.
We reformulate part of the arguments of T. Geisser and M. Levine relating motivic cohomology with finite coefficients to truncated étale cohomology with finite coefficients [9,10]. This reformulation amounts to a uniqueness theorem for motivic cohomology, and shows that the Geisser-Levine method can be applied generally to compare motivic cohomology with other types of cohomology theories. We apply this to prove an equivalence between conjectures of Tate and Beilinson on cycles in characteristic p and a vanishing conjecture for continuous étale cohomology. Received: 23 November 2000 / Published online: 5 September 2002  相似文献   

17.
Motivated by a problem of characterizing CR‐structures on the 3‐sphere, we give a geometric construction of formal deformations of a complex surface, which is the complement of a ball in the projective plane. They are described by cohomology groups of the blow‐up X of the projective plane. Moreover it will be shown that the space of these formal deformations is an infinite dimensional space with a natural stratification by finite dimensional subspaces. This stratification re ects algebro‐geometric properties of X. It is expected that our construction will clarify the complex geometric nature of the space of non‐embeddable CR‐structures on the 3‐sphere.  相似文献   

18.
Asymptotic analysis for linear difference equations   总被引:2,自引:0,他引:2  
We are concerned with asymptotic analysis for linear difference equations in a locally convex space. First we introduce the profile operator, which plays a central role in analyzing the asymptotic behaviors of the solutions. Then factorial asymptotic expansions for the solutions are given quite explicitly. Finally we obtain Gevrey estimates for the solutions. In a forthcoming paper we will develop the theory of cohomology groups for recurrence relations. The main results in this paper lay analytic foundations of such an algebraic theory, while they are of intrinsic interest in the theory of finite differences.

  相似文献   


19.
This paper studies finite volume schemes for scalar hyperbolic conservation laws on evolving hypersurfaces of \(\mathbb {R}^3\) . We compare theoretical schemes assuming knowledge of all geometric quantities to (practical) schemes defined on moving polyhedra approximating the surface. For the former schemes error estimates have already been proven, but the implementation of such schemes is not feasible for complex geometries. The latter schemes, in contrast, only require (easily) computable geometric quantities and are thus more useful for actual computations. We prove that the difference between approximate solutions defined by the respective families of schemes is of the order of the mesh width. In particular, the practical scheme converges to the entropy solution with the same rate as the theoretical one. Numerical experiments show that the proven order of convergence is optimal.  相似文献   

20.
 We construct torus bundles over locally symmetric varieties associated to cocycles in the cohomology group , where Γ is a discrete subgroup of a semisimple Lie group and L is a lattice in a real vector space. We prove that such a torus bundle has a canonical complex structure and that the space of holomorphic forms of the highest degree on a fiber product of such bundles is isomorphic to the space of mixed automorphic forms of a certain type. (Received 4 September 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号