首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given the algebra of observables of a quantum system subject to selection rules, a state can be represented by different density matrices. As a result, different von Neumann entropies can be associated with the same state. Motivated by a minimality property of the von Neumann entropy of a density matrix with respect to its possible decompositions into pure states, we give a purely algebraic definition of entropy for states of an algebra of observables, thus solving the above ambiguity. The entropy so-defined satisfies all the desirable thermodynamic properties and reduces to the von Neumann entropy in the quantum mechanical case. Moreover, it can be shown to be equal to the von Neumann entropy of the unique representative density matrix belonging to the operator algebra of a multiplicity-free Hilbert-space representation.  相似文献   

2.
We derive spin operator matrix elements between general eigenstates of the superintegrable ℤ N -symmetric chiral Potts quantum chain of finite length. Our starting point is the extended Onsager algebra recently proposed by Baxter. For each pair of spaces (Onsager sectors) of the irreducible representations of the Onsager algebra, we calculate the spin matrix elements between the eigenstates of the Hamiltonian of the quantum chain in factorized form, up to an overall scalar factor. This factor is known for the ground state Onsager sectors. For the matrix elements between the ground states of these sectors we perform the thermodynamic limit and obtain the formula for the order parameters. For the Ising quantum chain in a transverse field (N=2 case) the factorized form for the matrix elements coincides with the corresponding expressions obtained recently by the Separation of Variables method.  相似文献   

3.
Employing positive-definiteness arguments we analyse Boson field states, which combine classical and quantum mechanical features (signal and noise), in a constructive manner. Mathematically, they constitute Bauer simplexes within the convex, weak-*-compact state space of the C*-Weyl algebra, defined by a presymplectic test function space (smooth one-Boson wave functions) and are affinely homeomorphic to a state space of a classical field. The regular elements are expressed in terms of weak distributions (probability premeasures) on the dual test function space. The Bauer simplex arising from the bare vacuum is shown to generalize the quantum optical photon field states with positive P-functions.  相似文献   

4.
The controllability of a quantum system for the modified Pöschl-Teller (MPT) potential with the discrete bound states is investigated. The creation and annihilation operators of this potential are constructed directly from the normalized wave function with the factorization method and associated to an su(2) algebra. It is shown that this quantum system with the nondegenerate discrete bound states can, in principle, be strongly completely controllable, i.e., the system eigenstates can be guided by the external field to approach arbitrarily close to a target state, which could be theoretically realized by the actions of the creation and annihilation operators on the ground state.  相似文献   

5.
光束分离器是量子光学中的基本线性器件之一, 它在量子纠缠态的制备与测量上起着重要作用. 基于光束分离器(BS)对算符的矩阵变换关系, 本文导出了BS算符在若干表象中的自然表示. 利用这个自然表示(而非SU(2)李代数关系)及有序算符内的积分技术, 可直接导出BS算符的正规乘积、紧指数表示及多种分解形式. 此外, 可直接导出一种纠缠态表象及其Schmidt分解. 这对于讨论连续变量量子隐形传输是十分方便的. 关键词: 光束分离器算符 纠缠态表象 有序算符内的积分技术 Schmidt分解  相似文献   

6.
Quantum entanglement has become a resource for the fascinating developments in quantum information and quantum communication during the last decades. It quantifies a certain nonclassical correlation property of a density matrix representing the quantum state of a composite system. We discuss the concept of how entanglement changes with respect to different factorizations of the algebra which describes the total quantum system. Depending on the considered factorization a quantum state appears either entangled or separable. For pure states we always can switch unitarily between separability and entanglement, however, for mixed states a minimal amount of mixedness is needed. We discuss our general statements in detail for the familiar case of qubits, the GHZ states, Werner states and Gisin states, emphasizing their geometric features. As theorists we use and play with this free choice of factorization, which for an experimentalist is often naturally fixed. For theorists it offers an extension of the interpretations and is adequate to generalizations, as we point out in the examples of quantum teleportation and entanglement swapping.  相似文献   

7.
Quantum weak energy inequalities have recently been extensively discussed as a condition on the dynamical stability of quantum field states, particularly on curved spacetimes. We formulate the notion of a quantum weak energy inequality for general dynamical systems on static background spacetimes and establish a connection between quantum weak energy inequalities and thermodynamics. Namely, for such a dynamical system, we show that the existence of a class of states satisfying a quantum weak inequality implies that passive states (e.g., mixtures of ground- and thermal equilibrium states) exist for the time-evolution of the system and, therefore, that the second law of thermodynamics holds. As a model system, we consider the free scalar quantum field on a static spacetime. Although the Weyl algebra does not satisfy our general assumptions, our abstract results do apply to a related algebra which we construct, following a general method which we carefully describe, in Hilbert-space representations induced by quasifree Hadamard states. We discuss the problem of reconstructing states on the Weyl algebra from states on the new algebra and give conditions under which this may be accomplished. Previous results for linear quantum fields show that, on one hand, quantum weak energy inequalities follow from the Hadamard condition (or microlocal spectrum condition) imposed on the states, and on the other hand, that the existence of passive states implies that there is a class of states fulfilling the microlocal spectrum condition. Thus, the results of this paper indicate that these three conditions of dynamical stability are essentially equivalent. This observation is significant because the three conditions become effective at different length scales: The microlocal spectrum condition constrains the short-distance behaviour of quantum states (microscopic stability), quantum weak energy inequalities impose conditions at finite distance (mesoscopic stability), and the existence of passive states is a statement on the global thermodynamic stability of the system (macroscopic stability).Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany. verch@mis.mpg.de  相似文献   

8.
We construct the transition operators in terms of the generators of the general Yangian and the reduced Yangian. By acting these operators on a two-qubit pure state, we find that the entanglement degrees of the states are all decreased from the certain values to zero for the reduced Yangian algebra, which makes the state disentangled. This result sheds new light on the physical meaning of Y (sl(2) ) in quantum information.  相似文献   

9.
Exact quantum states of the time-dependent quadratic Hamiltonian system are investigated using SU(1,1) Lie algebra. We realized SU(1,1) Lie algebra by defining appropriate SU(1,1) generators and derived exact wave functions using this algebra for the system. Raising and lowering operators of SU(1,1) Lie algebra expressed by multiplying a time-constant magnitude and a time-dependent phase factor. Two kinds of the SU(1,1) coherent states, i.e., even and odd coherent states and Perelomov coherent states are studied. We applied our result to the Caldirola–Kanai oscillator. The probability density of these coherent states for the Caldirola–Kanai oscillator converged to the center as time goes by, due to the damping constant γ. All the coherent state probability densities for the driven system are somewhat deformed. PACS Numbers: 02.20.Sv, 03.65.-w, 03.65.Fd  相似文献   

10.
In the ferromagnetic Heisenberg chains of XXX and XXZ types with the hidden symmetries of Lie bi-algebra su(2) and quantum bi-algebra suq(2), we show that at thermodynamic limit the algebra contractions give the boson algebra h(4) and the q-deformed boion algebra hq(2) as the hidden symmetries respectively. The chains in constant magnetic field are studied and the ground states and lowest excited states are given explicitly with energy spectra. The phonon (or angular momentum) excitations are shown to be bosonic for the isotropic case and q-bosonic for the anisotropic case, and the ground states and lowest excited states of the systems of the chains in field are given explicitly. We give the phonon coherent states in the isotropic Heisenberg chain and the q-coherent states of the anisotropic chain at the thermodynamic limit. The q-coherent states are shown to be a squeezed states of phonon excitations.  相似文献   

11.
于肇贤  于舸 《光子学报》1997,26(8):673-678
利用量子代数SU(2)q,s的双参数变形自旋相干态,通过引入量子代数SU(2)q,s的不可约表示张量积空间的Bargmann表示,导出了这一表示中不可约表示基底、双参数变形自旋相干态以及算符的表达式.最后导出了量子代数SU(2)q,s在双参数变形自旋相干态下的Clebsch-Gordan系数.  相似文献   

12.
We present a kind of new coherent states associated with the Lie superalgebra SU(2/1), and discuss their properties in detail. We also evaluate the matrix elements of the SU(2/1) generators in the coherent state representations and obtain differential realizations of the SU(2/1) algebra in the coherent state space. The differential realizations may be useful for the study of the quasi-exactly solvable problems in the quantum mechanics.  相似文献   

13.
The higher dimensional quantum Hall liquid constructed recently supports stable topological membrane excitations. Here we introduce a microscopic interacting Hamiltonian and present its exact ground state wave function. We show that this microscopic ground state wave function describes a topological quantum membrane. We also construct variational wave functions for excited states using the noncommutative algebra on the four sphere. Our approach introduces a nonperturbative method to quantize topological membranes.  相似文献   

14.
Stan Gudder 《Foundations of Physics》2010,40(9-10):1566-1577
We show that an effect algebra E possess an order-determining set of states if and only if E is semiclassical; that is, E is essentially a classical effect algebra. We also show that if E possesses at least one state, then E admits hidden variables in the sense that E is homomorphic to an MV-algebra that reproduces the states of E. Both of these results indicate that we cannot distinguish between a quantum mechanical effect algebra and a classical one. Hereditary properties of sharpness and coexistence are discussed and the existence of {0,1} and dispersion-free states are considered. We then discuss a stronger structure called a sequential effect algebra (SEA) that we believe overcomes some of the inadequacies of an effect algebra. We show that a SEA is semiclassical if and only if it possesses an order-determining set of dispersion-free states.  相似文献   

15.
We consider the formation of entangled quantum states for an atomic Bose condensate interacting with an external electromagnetic field in a single-particle state under conditions of change in various regimes for exchange interaction processes. These states of the Bose system have high phase coherence and are accompanied by the generation of squeezed states of a new type in terms of the parameters defined by a combination of transition operators for the condensate atoms and external-field photons with an appropriate polynomial deformation of the algebra SU(2). We show that localized quantum structures corresponding to stable elementary excitations of the atoms and the field in the condensate can be formed in principle. We also analyze the purely quantum effects of collapse and revival for the level populations of the Bose condensate and the change in atomic statistics as well as determine the conditions for the formation of superstructure of these unsteady states for the Bose system.  相似文献   

16.
17.
We introduce the concept of algebra eigenstates which are defined for an arbitrary Lie group as eigenstates of elements of the corresponding complex Lie algebra. We show that this concept unifies different definitions of coherent states associated with a dynamical symmetry group. On the one hand, algebra eigenstates include different sets of Perelomov's generalized coherent states. On the other hand, intelligent states (which are squeezed states for a system of general symmetry) also form a subset of algebra eigenstates. We develop the general formalism and apply it to theSU(2) andSU(1,1) simple Lie groups. Complete solutions to the general eigenvalue problem are found in both cases by a method that employs analytic representations of the algebra eigenstates. This analytic method also enables us to obtain exact closed expressions for quantum statistical properties of an arbitrary algebra eigenstate. Important special cases such as standard coherent states and intelligent states are examined and relations between them are studied by using their analytic representations.  相似文献   

18.
Recently photon-added states that could be detected through the emission rather than the absorption of electromagnetic radiation have been actively explored and investigated. In this paper, we construct the photon-added power-law-potential coherent states (PA-PLPCSs) using generalized Heisenberg algebra. The Klauder minimal set of conditions required to obtain coherent states are satisfied. We study nonclassical effects associated with PA-PLCSs using the Mandel parameter and discuss some of their intriguing nonclassical behavior. These states have interesting significance and can be realized experimentally, exhibiting highly nonclassical behavior that depends on the degree of excitation and other parameters. Finally, we study the dynamics of entanglement and quantum discord for two-mode state within the framework of PLPCSs and show that the sudden death and sudden birth of correlations are due to the change and transfer of the correlation between one mode and its environment, using the monogamic relation between the entanglement and quantum discord.  相似文献   

19.
秦立国  田立君  吴士超 《物理学报》2016,65(2):20201-020201
Yangian代数是超出李代数更大的无穷维代数,是研究非线性量子完全可积系统的新对称特性的有力数学工具.基于介子态中夸克-味su(3)对称性和Yangian代数生成元的跃迁特性,本文研究了Yangian代数Y(su(3))生成元在三种正反介子态(π~±,K~±,K~0和K~0)各自组成的三种混合介子态(π,K和K_i~0)衰变中的作用.将Y(su(3))代数的八个生成元(I~±,U~±,V~±,I~3和I~8)作为跃迁算子,作用在混合介子态上,研究其可能的衰变道,以及衰变前后纠缠度的变化.结果表明:1)在李代数范围内的生成元I~3和I~8作用下,三种混合介子态衰变后组成成分没有发生变化,其中混合介子态π在I~8作用下衰变前后纠缠无变化,其他衰变纠缠度发生了变化;2)在其他的六个(I~±,U~±和V~±)超出李代数的生成元的作用下,三种混合介子态衰变前后组成成分发生了变化,其中两个衰变后变成单态,纠缠度为零;两个衰变不存在;剩余两个衰变后纠缠度发生了变化,此外在带电(K)和中性(K_I~0)两类K型混合介子态的六种可能的衰变中,两种类型的末态的纠缠度两两相同;3)三种混合介子态之间可以通过I~±,U~±和V~±算子循环转化,具有明显的对称性.本文从具有的对称性上提供了一种探索混合介子态可能衰变的方法,并且可以用此方法去预测可能的未知衰变粒子和解释己测得的衰变问题.  相似文献   

20.
Given a faithful normal state ? of a von Neumann algebra M, entropy and relative entropy for normal states of M are defined by Radon-Nikodyn derivatives of normal states with respect to ?. Most properties of entropy and relative entropy in finite quantum systems are shown to hold. It is also shown that the finiteness of relative entropy is related to the facial superposition principle in quantum theory [5].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号