首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

2.
We report transverse-field and zero-field muon spin rotation and relaxation studies of the superconducting rhenium oxide pyrochlore, Cd2Re2O7. Transverse-field measurements (H=0.007 T) show line broadening below T(c), which is characteristic of a vortex state, demonstrating conclusively the type-II nature of this superconductor. The penetration depth is seen to level off below about 400 mK (T/T(c) approximately 0.4), with a rather large value of lambda(T=0) approximately 7500 A. The temperature independent behavior below approximately 400 mK is consistent with a nodeless superconducting energy gap. Zero-field measurements indicate no static magnetic fields developing below the transition temperature.  相似文献   

3.
The phase diagram of the superconducting high-T(c) cuprates is governed by two energy scales: T*, the temperature below which a gap is opened in the excitation spectrum, and T(c), the superconducting transition temperature. The way these two energy scales are reflected in the low-temperature energy gap is being intensively debated. Using Zn substitution and carefully controlled annealing we prepared a set of samples having the same T* but different T(c)'s, and measured their gap using angle-resolved photoemission spectroscopy (ARPES). We show that T(c) is not related to the gap shape or size, but it controls the size of the coherence peak at the gap edge.  相似文献   

4.
We have investigated a gap structure in a newly discovered superconductor, MgB2, through measurement of the (11)B nuclear spin-lattice relaxation rate, (11)(1/T(1)). (11)(1/T(1)) is proportional to the temperature (T) in the normal state, and decreases exponentially in the superconducting (SC) state, revealing a tiny coherence peak just below T(c). The T dependence of 1/T(1) in the SC state can be accounted for by an s-wave SC model with a large gap size of 2Delta/k(B)T(c) approximately 5 which suggests it is in a strong-coupling regime.  相似文献   

5.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

6.
We have investigated a gap structure in the spin-triplet superconductor Sr2RuO4 through the measurement of the 101Ru nuclear spin-lattice relaxation rate (101)(1/T1) down to 0.09 K at zero magnetic field. In the superconducting state, 1/T1 in a high-quality sample with T(c) approximately 1.5 K exhibits a sharp decrease without the coherence peak, followed by a T3 behavior down to 0.15 K. This result is in marked contrast to the behavior observed below approximately 0.4 K in samples with lower T(c), where T1T is a constant. This behavior is demonstrated to be not intrinsic. We conclude that the gap structure in Sr2RuO4 is significantly anisotropic, consistent with line-node-like models.  相似文献   

7.
We report Cd nuclear magnetic resonance (NMR) and Re nuclear quadrupole resonance (NQR) studies on Cd(2)Re(2)O(7), the first superconductor among pyrochlore oxides (T(c) approximately 1 K). The Re NQR spectrum at zero magnetic field below 100 K rules out any magnetic or charge order. The spin-lattice relaxation rate below T(c) exhibits a pronounced coherence peak and follows the weak-coupling BCS theory with nearly isotropic energy gap. The results of Cd NMR point to a moderate ferromagnetic enhancement at high temperatures followed by a rapid decrease of the density of states below the structural transition temperature of 200 K.  相似文献   

8.
We report independent measurements (between 20 and 200 mK) of the electronic specific heat C(e), the electron-phonon coupling G(e-ph), and the electron-phonon relaxation time tau(e-ph) (from 10(-2) to 10(-5) s) for NbxSi1-x Anderson insulator thin films. We show that the usual equation tau(e-ph) = C(e)/G(e-ph) holds only if the resistance is solely related to the electron temperature. We conclude that at sufficiently low temperatures variable range hopping transport is assisted by electron-electron interactions alone and is independent of the phonon distribution.  相似文献   

9.
We report nuclear magnetic resonance studies on the beta-pyrochlore oxide superconductor KOs2O6. The nuclear relaxation at the K sites is entirely caused by fluctuations of the electric field gradient, which we ascribe to highly anharmonic low frequency oscillation (rattling) of K ions. A phenomenological analysis shows a crossover from overdamped to underdamped behavior of the rattling phonons with decreasing temperature and its sudden sharpening below the superconducting transition temperature T(c). Suppression of the Hebel-Slichter peak in the relaxation rate at the O sites below T(c) also indicates strong electron-phonon coupling.  相似文献   

10.
A direct measurement of the superconducting energy gap by point contact spectroscopy in nanostructured Nb films shows that the gap decreases with a reduction in the average particle size. The superconducting T(c), obtained from transport and magnetic measurements, also decreases with size and scales with the energy gap. The size dependence of the superconducting properties in this intermediate coupling type II superconductor is therefore governed by changes in the electronic density of states rather than by phonon softening. Consistent with the Anderson criterion, no T(c) was observed for sizes below 8 nm.  相似文献   

11.
We report (11)B and (195)Pt NMR measurements in noncentrosymmetric superconductor Li(2)Pt(3)B. We find that the spin susceptibility measured by the Knight shift remains unchanged across the superconducting transition temperature T(c). With decreasing temperature (T) below T(c), the spin-lattice relaxation rate 1/T(1) decreases with no coherence peak and is in proportion to T3. These results indicate that the Cooper pair is in the spin-triplet state and that there exist line nodes in the superconducting gap function. They are in sharp contrast to those in the isostructural Li(2)Pd(3)B which is a spin-singlet, s-wave superconductor, and are ascribed to the enhanced spin-orbit coupling due to the lack of spatial inversion symmetry. Our finding points to a new paradigm where exotic superconductivity arises in the absence of electron-electron correlations.  相似文献   

12.
Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0. 55. This was sufficient to influence the sc state of Rh, whose T(c) and B(c) are exceptionally low. Because B(c)相似文献   

13.
We investigate the relaxation dynamics of nonequilibrium carriers in organic conductors κ-(BEDT-TTF)(2)Cu[N(CN)(2)]X (X=Br and Cl) using ultrafast time-resolved optical spectroscopy. The dynamics for both salts show similar temperature dependences, which is well characterized by the carrier relaxation across the pseudogap (PG) of the magnitude Δ(PG) ≈ 16 meV for Br salt and 7.0 meV for Cl salt. On the other hand, only the Br salt shows an abrupt increase of the decay time at low temperature, indicating an additional decay component associated with the superconducting (SC) gap below T(c). The fluence dependent dynamics at low temperature evidences the superposition of the SC component onto the PG component. These results indicate a metallic-insulating phase separation in the Br salt triggered by photoexcited nonequilibrium carriers.  相似文献   

14.
An aluminum nanowire switches from superconducting to normal as the current is increased in an upsweep. The switching current (I(s)) averaged over upsweeps approximately follows the depairing critical current (I(c)) but falls below it. Fluctuations in I(s) exhibit three distinct regions of behaviors and are nonmonotonic in temperature: saturation well below the critical temperature T(c), an increase as T(2/3) at intermediate temperatures, and a rapid decrease close to T(c). Heat dissipation analysis indicates that a single phase slip is able to trigger switching at low and intermediate temperatures, whereby the T(2/3) dependence arises from the thermal activation of a phase slip, while saturation at low temperatures provides striking evidence that the phase slips by macroscopic quantum tunneling.  相似文献   

15.
We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional superconducting (SC) property in Pr(Os4Sb12 with T(c)=1.85 K. The temperature (T) dependence of nuclear-spin-lattice-relaxation rate, 1/T(1), and NQR frequency unravel a low-lying crystal-electric-field splitting below T0 approximately 10 K, associated with Pr3+(4f(2))-derived ground state. In the SC state, 1/T(1) shows neither a coherence peak just below T(c) K nor a T3-like power-law behavior observed for anisotropic HF superconductors with the line-node gap. The isotropic energy gap with its size Delta/k(B)=4.8 K seems to open up across T(c) below T(*) approximately 2.3 K. It is surprising that Pr(Os4Sb12 looks like an isotropic HF superconductor-it may indeed argue for Cooper pairing via quadrupolar fluctuations.  相似文献   

16.
We report on the response of the electronic continuum from inelastic light-scattering experiments over an extended energy range between 1.970 and 4.504 eV in the superconducting state of Bi2Sr2CaCu2O8. The formation of a substantial Raman feature at shifts below twice the superconducting gap as well as the additional weight above this energy are found to be strongly dependent on the incident photon energy. For excitation wavelengths observed in ultraviolet, we find an enhancement of the integrated spectral weight below T(c). The resulting composite feature shows three distinct resonances at 2.5, 3.3, and 3.8 eV. We strongly suggest that the superconductivity-induced changes are the result of both the opening of a superconducting gap and the appearance of a collective mode.  相似文献   

17.
We report a careful 59Co nuclear quadrupolar resonance measurement on the recently discovered cobalt oxyhydrate Na0.35CoO2.yH(2)O superconductor from T=40 K down to 0.2 K. We find that in the normal state the spin-lattice relaxation rate 1/T(1) follows a Curie-Weiss type temperature (T) variation, 1/T(1)T=C/(T-theta), with theta=-42 K, suggesting two-dimensional antiferromagnetic spin correlations. Below T(c)=3.9 K, 1/T(1) decreases with no coherence peak and follows a T(n) dependence with n approximately 2.2 down to approximately 2.0 K but crosses over to a 1/T(1) proportional to T variation below T=1.4 K, which suggests non-s-wave superconductivity. The data in the superconducting state are most consistent with the existence of line nodes in the gap function.  相似文献   

18.
We present a study of the anisotropy in the superconducting energy gap in a single crystal of YNi2B2C (T(c) approximately 14.6 K) using directional point-contact spectroscopy. The superconducting energy gap at 2.7 K, when measured for I||c, is 4.5 times larger than that for I||a. The energy gaps in the two directions also have different temperature dependences. Our results support a scenario with s + g like symmetry.  相似文献   

19.
The small size vortex-antivortex pairs proliferation in a type-II superconducting film is considered below T(c). The corresponding contribution to the free energy is calculated. It is shown that these fluctuations give the main temperature dependent contribution to the heat capacity of the superconducting film in the sufficiently large interval of temperatures below the transition point.  相似文献   

20.
The effect of electron-phonon scattering processes on the thermoelectric properties of extrinsic graphene was studied. Electrical and thermal resistivity, as well as the thermopower, were calculated within the Bloch theory approximations. Analytical expressions for the different transport coefficients were obtained from a variational solution of the Boltzmann equation. The phonon-limited electrical resistivity ρ(e-ph) shows a linear dependence at high temperatures and follows ρ(e-ph) ~T(4) at low temperatures, in agreement with experiments and theory previously reported in the literature. The phonon-limited thermal resistivity at low temperatures exhibits a ~T dependence and achieves a nearly constant value at high temperatures. The predicted Seebeck coefficient at very low temperatures is Q(T) ~ Π(2)k(2)_(B)/T(3eE_(F), which shows a n(-1/2) dependence with the density of carriers, in agreement with experimental evidence. Our results suggest that thermoelectric properties can be controlled by adjusting the Bloch-Grüneisen temperature through its dependence on the extrinsic carrier density in graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号