首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimal conditions for acetone–butanol–ethanol (ABE) production were evaluated using waste seaweed from Gwangalli Beach, Busan, Korea. The waste seaweed had a fiber and carbohydrate, content of 48.34%; these are the main resources for ABE production. The optimal conditions for obtaining monosaccharides based on hyper thermal (HT) acid hydrolysis of waste seaweed were slurry contents of 8%, sulfuric acid concentration of 138 mM, and treatment time of 10 min. Enzymatic saccharification was performed using 16 unit/mL Viscozyme L, which showed the highest affinity (Km?=?1.81 g/L). After pretreatment, 34.0 g/L monosaccharides were obtained. ABE fermentation was performed with single and sequential fermentation of Clostridium acetobutylicum and Clostridium tyrobutyricum; this was controlled for pH. A maximum ABE concentration of 12.5 g/L with YABE 0.37 was achieved using sequential fermentation with C. tyrobutyricum and C. acetobutylicum. Efficient ABE production from waste seaweed performed using pH-controlled culture broth and sequential cell culture.  相似文献   

2.
In this study, an extensive screening was undertaken to isolate some amylolytic microorganisms capable of producing bioethanol from starchy biomass through Consolidated Bioprocessing (CBP). A total of 28 amylolytic microorganisms were isolated, from which 5 isolates were selected based on high α-amylase and glucoamylase activities and identified as Candida wangnamkhiaoensis, Hyphopichia pseudoburtonii (2 isolates), Wickerhamia sp., and Streptomyces drozdowiczii based on 26S rDNA and 16S rDNA sequencing. Wickerhamia sp. showed the highest ethanol production (30.4 g/L) with fermentation yield of 0.3 g ethanol/g starch. Then, a low cost starchy waste, potato peel waste (PPW) was used as a carbon source to produce ethanol by Wickerhamia sp. Finally, in order to obtain maximum ethanol production from PPW, a fermentation medium was statistically designed. The effect of various medium ingredients was evaluated initially by Plackett-Burman design (PBD), where malt extracts, tryptone, and KH2PO4 showed significantly positive effect (p value < 0.05). Using Response Surface Modeling (RSM), 40 g/L (dry basis) PPW and 25 g/L malt extract were found optimum and yielded 21.7 g/L ethanol. This study strongly suggests Wickerhamia sp. as a promising candidate for bioethanol production from starchy biomass, in particular, PPW through CBP.  相似文献   

3.
Bioethanol was produced using polysaccharide from soybean residue as biomass by separate hydrolysis and fermentation (SHF). This study focused on pretreatment, enzyme saccharification, and fermentation. Pretreatment to obtain monosaccharide was carried out with 20% (w/v) soybean residue slurry and 270 mmol/L H2SO4 at 121 °C for 60 min. More monosaccharide was obtained from enzymatic hydrolysis with a 16 U/mL mixture of commercial enzymes C-Tec 2 and Viscozyme L at 45 °C for 48 h. Ethanol fermentation with 20% (w/v) soybean residue hydrolysate was performed using wild-type and Saccharomyces cerevisiae KCCM 1129 adapted to high concentrations of galactose, using a flask and 5-L fermenter. When the wild type of S. cerevisiae was used, an ethanol production of 20.8 g/L with an ethanol yield of 0.31 g/g consumed glucose was obtained. Ethanol productions of 33.9 and 31.6 g/L with ethanol yield of 0.49 g/g consumed glucose and 0.47 g/g consumed glucose were obtained in a flask and a 5-L fermenter, respectively, using S. cerevisiae adapted to a high concentration of galactose. Therefore, adapted S. cerevisiae to galactose could enhance the overall ethanol fermentation yields compared to the wild-type one.  相似文献   

4.
The high demand for renewable energy and increased biodiesel production lead to the surplus availability of crude glycerol. Due to the above reason, the bio-based value addition of crude glycerol into various bioproducts is investigated; among them, microbial lipids are attractive. The present study was dedicated to find the optimal glycerol concentration and carbon/nitrogen (C/N) ratio to produce maximum lipid using Yarrowia lipolytica SKY7. The glycerol concentration (34.4 to168.2 g/L) and C/N ratio (25 to 150) were selected to investigate to maximize the lipid production. Initial glycerol concentration 112.5 g/L, C/N molar ratio of 100, and with 5 % v/v inoculum supplementation were found to be optimum for biomass and lipid production. Based on the above optimal parameters, lipid concentration of 43.8 % w/w with a biomass concentration of 14.8 g/L was achieved. In the case of glycerol concentration, the maximum Yp/s (0.192 g/g); Yx/s (0.43 g/g) was noted when the initial glycerol concentration was 112.5 g/L with C/N molar ratio 100 and inoculum volume 5 % v/v. The glycerol uptake was also noted to increase with the increase in glycerol concentration. At low C/N ratio, the glycerol consumption was found to be high (79.43 g/L on C/N 25) whereas the glycerol consumption was observed to decrease when the C/N ratio was raised to 150 (40.8 g/L).  相似文献   

5.
Calculations are made using the equations Δr G = Δr H ? TΔr S and Δr X = Δr H ? Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  ? H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   

6.
Conditions for ethanol production were evaluated using waste seaweed obtained from Gwangalli beach, Busan, Korea, after strong winds on January 15, 2015. Eleven types of seaweed were identified, and the proportions of red, brown, and green seaweed wastes were 26, 46, and 28%, respectively. Optimal pretreatment conditions were determined as 8% slurry content, 286 mM H2SO4 for 90 min at 121 °C. Enzymatic saccharification with 16 units/mL Celluclast 1.5L and Viscozyme L mixture at 45 °C for 48 h was carried out as optimal condition. A maximum monosaccharide concentration of 30.2 g/L was obtained and used to produce ethanol. Fermentation was performed with single or mixed yeasts of non-adapted and adapted Saccharomyces cerevisiae KCTC 1126 and Pichia angophorae KCTC 17574 to galactose and mannitol, respectively. The maximum ethanol concentration and yield of 13.5 g/L and YEtOH of 0.45 were obtained using co-culture of adapted S. cerevisiae and P. angophorae.  相似文献   

7.
Growths of Lyngbya limnetica and Oscillatoria obscura were investigated at varying pH, light intensity, temperature, and trace element concentration with a view to optimize these parameters for obtaining the maximum carbohydrate content. The maximum growth for both strains was obtained at pH 9.0 and temperature 20 ± 3 °C using a light intensity of 68.0 μmol m?2 s?1 with continuous shaking. Growth under the nitrogen starvation condition affected the carbohydrate content more compared to the phosphorus starvation, and maximum concentrations were found as 0.660 and 0.621 g/g of dry biomass for L. limnetica and O. obscura, respectively. Under the optimized nitrogen-rich conditions, the specific growth rates for the two strains were found to be 0.187 and 0.215 day?1, respectively. The two-stage growth studies under nitrogen-rich (stage I) followed by nitrogen starvation (stage II) conditions were performed, and maximum biomass and carbohydrate productivity were found as 0.088 and 0.423 g L?1 day?1 for L. limnetica. This is the first ever attempt to evaluate and optimize various parameters affecting the growth of cyanobacterial biomass of L. limnetica and O. obscura as well as their carbohydrate contents.  相似文献   

8.
Aldehyde dehydrogenase (E.C. 1.2.1.x) can catalyze detoxification of acetaldehydes. A novel acetaldehyde dehydrogenase (istALDH) from the non-Saccharomyces yeast Issatchenkia terricola strain XJ-2 has been previously characterized. In this work, Lactococcus lactis with the NIsin Controlled Expression (NICE) System was applied to express the aldehyde dehydrogenase gene (istALDH) in order to catalyze oxidation of acetaldehyde at low pH. A recombinant L. lactis NZ3900 was obtained and applied for the detoxification of acetaldehyde as whole-cell biocatalysts. The activity of IstALDH in L. lactis NZ3900 (pNZ8148-istALDH) reached 36.4 U mL?1 when the recombinant cells were induced with 50 ng mL?1 nisin at 20 °C for 2 h. The IstALDH activity of recombinant L. lactis cells showed higher stability at 37 °C and pH 4.0 compared with the crude enzyme. L. lactis NZ3900 (pNZ8148-istALDH) could convert acetaldehyde at pH 2.0 while the crude enzyme could not. Moreover, the resting cells of L. lactis NZ3900 (pNZ8148-istALDH) showed a 2.5-fold higher activity and better stability in catalyzing oxidation of acetaldehyde at pH 2.0 compared with that of Escherichia coli expressing the IstALDH. Taken together, the L. lactis cells expressing recombinant IstALDH are potential whole-cell biocatalysts that can be applied in the detoxification of aldehydes.  相似文献   

9.
The properties of trioctylmethyl ammonium dodecanedioate (TAD) as a corrosion inhibitor (CI) of API 5L X52 steel in production water (PW) were evaluated in steady state using weight loss and polarization techniques within a Reynolds number (N Re ) interval ranging from 500 to 40,000. The highest obtained IE was 87 % at 100 ppm with N Re  = 2500, whereas the lowest IE was 15 % at 10 ppm with N Re  = 4000. TAD was classified as a mixed-type CI of API 5L X52 steel in PW. The \(\Delta G_{\text{ads}}^{^\circ }\) data established a relationship between the N Re and the adsorption process, confirming the occurrence of physical adsorption phenomena.  相似文献   

10.
Mosquitoes are the most critical group of insects in the context of public health, since they transmit key parasites and pathogens, causing millions of deaths annually. Insecticides from natural products may boost the effectiveness of vector control programs. In this study, we tested silver nanoparticles (AgNPs) fabricated using the leaf extract of the orchid Zeuxine gracilis as reducing agent, and the microbial pesticide Bacillus sphaericus, against the mosquitoes Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The synthesis of AgNP was confirmed analyzing the excitation of surface Plasmon resonance using ultraviolet–visible (UV–Vis) spectrophotometry. SEM and TEM showed the irregular shapes of AgNPs. EDX spectroscopy, FTIR spectroscopy, X-ray diffraction and dynamic light scattering analysis were carried out. AgNPs were highly effective against the larvae of An. stephensi (LC50 = 8.48 µg/mL), Ae. aegypti (LC50 = 10.39 µg/mL) and Cx. quinquefasciatus (LC50 = 13.21 µg/mL), respectively. Combined treatments testing B. sphaericus with AgNPs were also effective against An. stephensi (LC50 = 12.32 µg/mL), Ae. aegypti (LC50 = 14.78 µg/mL) and Cx. quinquefasciatus (LC50 = 19.19 µg/mL). Overall, this study suggests that the orchid-synthesized AgNPs can be a rapid, environmentally safer bio-pesticide to be used in synergy with B. sphaericus to control mosquito vectors.  相似文献   

11.
S-allyl-β-N-[(2-hydroxyphenyl)methylene]hyrazinecarbodithioate) (1, H2L), the Schiff base of dithiocarbazate with unsaturated allyl substitution, can act as a new tridentate SNO ligand H2–L and react with cobalt(II) nitrate hexahydrate to form the novel linear trinuclear isovalence Co(II) complex, [Co3(H–L)2(L)2] 2C2H5OH (2). The compounds were characterized by elemental analysis, infrared, and ultraviolet spectroscopy. Compound 2 was also characterized by single-crystal X-ray analysis and crystallizes in the orthorhombic space group, Pbcn, with a = 30.643(1) Å, b = 9.118(4) Å, c = 19.017(7) Å, α = β γ = 90°, V = 5312.95 Å3, Z = 4, and R 1 = 0.0790, (wR 2) = 0.1223. The six-coordinate central Co(II) atom is bonded to two deprotonated metal-containing ligands. The terminal Co(II) atoms are in a square planar SNON four-coordinate environment and connected to the central Co(II) by N-atoms from the ligand backbone. For quantifying the intermolecular interactions in crystal lattice, the new d norm surface and the breakdown of fingerprint plots have been used for visualizing and exploring the compound 2.  相似文献   

12.
The objective of this research was to investigate the kinetics of lipid production by Yarrowia lipolytica SKY7 in the crude glycerol-supplemented media with and without the control of pH. Lipid and citric acid production were improved with the pH control condition. There was no significant difference observed in the biomass concentration with or without the pH control. In the pH-controlled experiments, the biomass and lipid concentration reached 18 and 7.78 g/L, (45.5% w/w), respectively, with lipid yield (Yp/s) of 0.179 g/g at 60 h of fermentation. The lipid production was directly correlated with growth and the process was defined as growth associated. After 60 h of fermentation, the lipid degradation was noticed in the pH-controlled reactor whereas it occurred after 84 h in the pH-uncontrolled reactor. Apart from lipid, citric acid was produced as the major extracellular product in both fermentations but the much lower concentration in uncontrolled pH. Based on the experimental results, it is evident that controlling the pH will enhance the lipid production by 15% compared to pH-uncontrolled fermentation.  相似文献   

13.
A convenient method is suggested for calculating thermally averaged powers of the normal vibrational coordinates Q i by iteratively solving the Bloch integral equation with an anharmonic function of potential energy using multidimensional Hermite polynomials. Analytical formulas of the first approximation regarding anharmonicity constant have been obtained for the following moments of thermally averaged density: 〈Q 1〉, 〈 Q 1 2 〉, 〈Q 1 Q 2〉, 〈Q 1 3 〉 〈Q 1 3 〉, 〈Q 1 Q 2 Q 3〉, 〈Q 1 4 〉, 〈Q 1 2 Q 2 2 〉, 〈Q 1 Q 2/3〉, 〈Q 1 Q 2 Q 3 2 〉, 〈 Q 1 Q 2 Q 3 Q 4〉.  相似文献   

14.
A novel cyclopropane derivative, 1-cyano-N-p-tolylcyclopropanecarboxamide (C12H12N2O, Mr = 200.24) was synthesized and its structure was studied by X-ray diffraction, FTIR, 1H and 13C NMR spectrum and MS. The crystals are monoclinic, space group P2_1/c with a = 7.109 (4), b = 13.758 (7), c = 11.505 (6) Å, α = 90.00, β = 102.731 (8), γ = 90.00 °, V = 1097.6 (9) Å3, Z = 4, F(000) = 312, D c  = 1.212 g/cm3, μ = 0.0800 mm?1, the final R = 0.0490 and wR = 0.1480 for 1,375 observed reflections with I > 2σ(I). A total of 6,109 reflections were collected, of which 2,290 were independent (R int = 0.0290). Theoretical calculation of the title compound was carried out with HF/6-31G (d,p), B3LYP/6-31G (d,p), MP2/6-31G (d,p). The full geometry optimization was carried out using 6-31G(d,p) basis set, and the frontier orbital energy. Atomic net charges were discussed, and the structure-activity relationship was also studied. The preliminary biological test showed that the synthesized compound is bioactive against the KARI of Escherichia coli.  相似文献   

15.
A novel bis-heterocyclic compound was synthesized and characterized. The crystal structure of the title compound (C22H20ClN5OS, Mr = 437.94) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P-1 with a = 8.646 (2), b = 9.148 (3), c = 14.540 (4) Å, α = 94.422 (4), β = 98.500 (4), γ = 102.823 (4)°, V = 1101.8 (5) Å3, Z = 2, F(000) = 312, Dc = 1.320 g/cm3, μ = 0.2900 mm?1, the final R 1 = 0.041000 and wR 2 = 0.1160 for 2675 observed reflections with I > 2σ(I). A total of 5623 reflections were collected, of which 3866 were independent (R int = 0.019000). The fungicidal activity of title compound was determined, the results showed the title compound displayed moderate fungicidal activity against G. zeae Petch, Phytophthora infestans (Mont.) de Bary, Botryosphaeria berengeriana f. sp. piricola (Nose) koganezawa et Sakuma, Fusarium oxysporum f.sp. cucumerinum, and Cercospora arachidicola.  相似文献   

16.
LRM (Low Rank Modification) is a mathematical method that produces eigenvalues and eigenstates of generalized eigenvalue equations. It is similar to the perturbation expansion in that it assumes the knowledge of the eigenvalues and eigenstates of some related (unperturbed) system. However, unlike perturbation expansion, LRM produces correct results however large the modification of the original system. LRM of finite-dimensional systems is here generalized to the combined (external and internal) modifications. Parent n-dimensional system A n containing n eigenvalues λ i and n eigenstates \({| {\Phi_i}\rangle}\) is described by the generalized n × n eigenvalue equation. In an external modification system A n interacts with another ρ-dimensional system B ρ which is situated outside the system A n . In an internal modification relatively small σ-dimensional subsystem of the parent system A n is modified. Modified system C n+ρ that contains external as well as internal modifications is described by the generalized (n + ρ) × (n + ρ) eigenvalue equation. This system has (n + ρ) eigenvalues \({\varepsilon_s}\) and (n + ρ) corresponding eigenstates \({| {\Psi_s}\rangle}\) . In LRM this generalized (ρn) × (ρn) eigenvalue equation is replaced with a (nonlinear) (ρ + σ) × (ρ + σ) equation which produces all eigenvalues \({\varepsilon_s \notin \left\{ {\lambda_i}\right\}}\) and all the corresponding eigenstates \({| {\Psi_s}\rangle }\) of C n + ρ. Another equation produces remaining solutions (if any) that satisfy \({\varepsilon_s \in \left\{ {\lambda_i}\right\}}\) . Those two equations produce exact solution of the modified system C n + ρ. If (ρσ) is small with respect to n, this approach is numerically much more efficient than a standard diagonalization of the original generalized eigenvalue equation. Unlike perturbation expansion, LRM produces exact results, however large modification of the parent system A n .  相似文献   

17.
For the first time in the published literature, a study is described concerning the use of the saw-sedge Cladium mariscus (C. mariscus) for adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous systems. Among the experiments carried out, the elemental composition of C. mariscus was determined (C = 48.0 %, H = 7.1 %, N = 0.95 %, S = 0.4 %), FTIR spectroscopic analysis was performed to confirm the chemical structure of the adsorbent, and porous structure parameters were measured: BET surface area (A BET  = 0.6 m2/g), total pore volume (V p  = 0.001 cm3/g) and average pore size (S p  = 6.6 nm). It was shown that the effectiveness of removal of 2,4-D from aqueous systems using C. mariscus depends on parameters of the process: contact time, system pH, mass of sorbent, and temperature. Maximum adsorption was attained for a solution at pH = 3. Further increase in the alkalinity of the tested systems led to a reduction in the effectiveness of the process. The kinetic of adsorption of 2,4-D by C. mariscus was also determined, and thermodynamic aspects were investigated. The experimental data obtained correspond to a pseudo-second-order kinetic model of type 1. Additionally the negative values obtained for ΔHº indicate that the process is exothermic, and the negative values of ΔGº show it to be spontaneous. As the temperature of the system increases the spontaneity of adsorption is reduced, in accordance with the exothermic nature of the process.  相似文献   

18.
In a majority of environments, microbes live as interacting communities. Microbial communities are composed of a mix of microbes with often unknown functions. Polymicrobial diseases represent the clinical and pathological manifestations induced by the presence of multiple infectious agents. These diseases are difficult to diagnose and treat and usually are more severe than monomicrobial infections. The interaction relationship between Enterococcus faecalis and Escherichia coli was researched using a Calvet calorimeter. Three mixtures of both bacteria were prepared in the following proportions: 20 + 80 % (0.2 mL E. faecalis + 0.8 mL E. coli), 50 + 50 % (0.5 mL E. faecalis + 0.5 mL E. coli) and 80 + 20 % (0.8 mL E. faecalis + 0.2 mL E. coli). Experiments were carried out at concentration of 106 CFU mL?1 and a constant temperature of 309.65 K. The differences in shape of graph of E. faecalis, E. coli and their mixtures were compared. Also, the thermokinetic parameters such as detection time (t d), growth constant (k), generation time (G) and the amount of heat released (Q) were calculated.  相似文献   

19.
The reaction on 8-hydroxy quinoline-7-aldehyde azo compounds (HL n ) (where n = 1–5) with 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one to obtain HL n (where n = 6–10) have been characterized by means of TLC, melting point and spectral data, such as IR, 1H NMR, mass spectra and thermal studies. The X-ray diffraction patterns of two starting materials 8-hydroxy quinoline-7-aldehyde (start 1), 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (start 2) and the ligands (HL5,10) are investigated in powder form. All the ligands have been screened for their antimicrobial activity against four local bacterial species, two Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) as well as against four local fungi; Aspergillus niger, Alternaria alternata, Penicillium italicum and Fusarium oxysporium. The results show that the azo ligands (HL n ) (where n = 1–5) have no antimicrobial activity against bacteria and fungi while most azomethine ligands (HL n ) (where n = 6–10) are good antibacterial agents against E. coli and K. pneumoniae as well as antifungal agents against P. italicum and A. alternata. The results were compared to standard substances (start 1) and (start 2). Among the azomethine ligands, HL10 was the most effective against the most microorganisms tested. The size of clear zone was ordered as p-(OCH3 < CH3 < H < Cl < NO2) as expected from Hammett’s constant (σ R ). Also, the ultrastructure study of the affected bacteria confirmed that HL8 is good antibacterial agent against E. coli and S. aureus.  相似文献   

20.
Peucedanum alsaticum L. and Peucedanum cervaria (L.) Lap. are, in common with all species belonging to the Apiaceae family, rich in coumarins and essential oils. Phenolic acids also present in the plant are very important pharmacologically, because of their broad spectrum of biological activity. A simple high-performance liquid chromatographic method has been developed for separation and quantitative analysis of the major phenolic acids in extracts obtained from the fruits of P. alsaticum and P. cervaria. Soxhlet extraction, ultrasound extraction, and accelerated solvent extraction under different conditions were used to find the most efficient extraction conditions. Optimum chromatographic performance was obtained with a C18 column and acetonitrile—1% (v/v) aqueous acetic acid as mobile phase. Ferulic, p-coumaric, caffeic, vanillic, syringic, p-hydroxybenzoic, protocatechuic, chlorogenic, and gallic acids were investigated in the fruits of the plants. For all calibration plots linearity was good (R 2 > 0.9991) in the ranges tested. The highest yields of most of the phenolic acids were achieved by use of accelerated solvent extraction. The predominant phenolic acid in the fruits of both plants was chlorogenic acid. The amounts, which depended on the method of extraction, were approximately 146 ± 1.616 and 109.92 ± 3.405 mg per 100 g dry weight for P. cervaria and P. alsaticum, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号