首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructooligosaccharides and levan have a wide range of applications in the food industry due to their physiological and functional properties. The enzymatic synthesis of these molecules exhibits great advantages when compared with microbial fermentation. In this study, the production of levansucrase from Bacillus subtilis natto and its utilization in fructooligosaccharides and levan syntheses using different reaction conditions were described. The best condition for levansucrase production was 420.7 g L?1 of sucrose at pH 7.0, which reached 23.9 U ml?1 of transfructosylation activity. In a bioreactor, the highest production of fructooligosaccharides was 41.3 g L?1 using a medium containing 350 g L?1 sucrose at 35 °C for 36 h. The enzymatic synthesis of levan resulted in 86.9 g L?1 when conditions similar to those used for fructooligosaccharides synthesis were applied. These results indicate that the levansucrase from B. subtilis natto could be applied for the co-production of fructooligosaccharides and levan, which are biomolecules that have health benefits and are used successfully in the food industry.  相似文献   

2.
The high demand for renewable energy and increased biodiesel production lead to the surplus availability of crude glycerol. Due to the above reason, the bio-based value addition of crude glycerol into various bioproducts is investigated; among them, microbial lipids are attractive. The present study was dedicated to find the optimal glycerol concentration and carbon/nitrogen (C/N) ratio to produce maximum lipid using Yarrowia lipolytica SKY7. The glycerol concentration (34.4 to168.2 g/L) and C/N ratio (25 to 150) were selected to investigate to maximize the lipid production. Initial glycerol concentration 112.5 g/L, C/N molar ratio of 100, and with 5 % v/v inoculum supplementation were found to be optimum for biomass and lipid production. Based on the above optimal parameters, lipid concentration of 43.8 % w/w with a biomass concentration of 14.8 g/L was achieved. In the case of glycerol concentration, the maximum Yp/s (0.192 g/g); Yx/s (0.43 g/g) was noted when the initial glycerol concentration was 112.5 g/L with C/N molar ratio 100 and inoculum volume 5 % v/v. The glycerol uptake was also noted to increase with the increase in glycerol concentration. At low C/N ratio, the glycerol consumption was found to be high (79.43 g/L on C/N 25) whereas the glycerol consumption was observed to decrease when the C/N ratio was raised to 150 (40.8 g/L).  相似文献   

3.
Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH2PO4 8.0, MgSO4?7H2O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.  相似文献   

4.
An extracellular organic solvent-tolerant lipase-producing bacterium was isolated from oil-contaminated soil samples and was identified taxonomically as Pseudomonas stutzeri, from which the lipase was purified and exhibited maximal activity at temperature of 50 °C and pH of 9.0. Meanwhile, the lipase was stable below or at 30 °C and over an alkaline pH range (7.5–11.0). Ca2+ could significantly improve the lipase thermal stability which prompts a promising application in biocatalysis through convenient medium engineering. The lipase demonstrated striking features such as distinct stability to the most tested hydrophilic and hydrophobic solvents (25 %, v/v), and DMSO could activate the lipase dramatically. In the enzyme-catalyzed resolution, lipase ZS04 manifested excellent enantioselective esterification toward the (R)-1-(4-methoxyphenyl)-ethanol (MOPE), a crucial chiral intermediate in pharmaceuticals as well as in other analogs with strict substrate specificity and theoretical highest conversion yield. This strong advantage over other related schemes made lipase ZS04 a promising biocatalyst in organic synthesis and pharmaceutical applications.  相似文献   

5.
Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K2HPO4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.  相似文献   

6.
A simple, rapid, and sensitive non-aqueous capillary electrophoresis procedure for the quantitative determination of matrine and oxymatrine is established. Optimum separation conditions were obtained when the sample was injected under pressure for 3 s at 50 mbar and separated with the buffer containing 70 mM ammonium acetate, 7.0% (v/v) acetic acid, and 10% (v/v) acetonitrile in methanol medium at 25 kV applied voltage. The analytes were detected at 205 nm. The two alkaloids can be separated within 12 min and quantified with high sensitivity. The method was validated in terms of reproducibility, linearity, and accuracy when applied to the analysis of matrine and oxymatrine in Sophora flavescens and its medicinal preparations.  相似文献   

7.
In this article we present a singularly almost P-stable exponentially-fitted four-step method for the approximate solution of the one-dimensional Schrödinger equation. More specifically we present a method that is singularly almost P-stable (a concept later introduced in this article) and also integrates exactly any linear combination of the functions {1, x, exp ( ±I v x) , x exp ( ±I v x) , x 2 exp ( ±I v x)}. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the approximate solution of resonance problem of the radial Schrödinger equation.  相似文献   

8.
Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L?1 day?1 and the space-time productivity of 143.2 mmol L?1 h?1 g?1. The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.  相似文献   

9.
The yeast Ogataea thermomethanolica has recently emerged as a potential host for heterologous protein expression at elevated temperature. To evaluate the feasibility of O. thermomethanolica as heterologous host in large-scale fermentation, constitutive production of fungal phytase was investigated in fed-batch fermentation. The effect of different temperatures, substrate feeding strategies, and carbon sources on phytase production was investigated. It was found that O. thermomethanolica can grow in the temperature up to 40 °C and optimal at 34 °C. However, the maximum phytase production was observed at 30 °C and slightly decreased at 34 °C. The DOT stat control was the most efficient feeding strategy to obtain high cell density and avoid by-product formation. The table sugar can be used as an alternative substrate for phytase production in O. thermomethanolica. The highest phytase activity (134 U/mL) was obtained from table sugar at 34 °C which was 20-fold higher than batch culture (5.7 U/mL). At a higher cultivation temperature of 38 °C, table sugar can be used as a low-cost substrate for the production of phytase which was expressed with an acceptable yield (85 U/mL). Lastly, the results from this study reveal the industrial favorable benefits of employing O. thermomethanolica as a host for heterologous protein production.  相似文献   

10.
Numerous desulfurizing bacteria from the Rhodococcus genus harbor conserved dsz genes responsible for the degradation of sulfur compounds through 4S pathway. This study describes a newly identified desulfurizing bacterium, Rhodococcus sp. FUM94, which unlike previously identified strains encodes a truncated dsz operon. DNA sequencing revealed a frameshift mutation in the dszA gene, which led to an alteration of 66 amino acids and deletion of other C-terminal 66 amino acids. The resulting DszA polypeptide was shorter than DszA in Rhodococcus sp. IGTS8 reference strain. Despite the truncation, desulfurizing activity of the operon was observed and attributed to the removal of an overlap of dszA and dszB genes, and lack of active site in the altered region. Desulfurization experiments resulted in specific production rate of 6.3 mmol 2-hydroxy biphenyl (kgDCW)?1 h?1 at 2 g l?1 biocatalyst concentration and 68.8% biodesulfurization yield at 20 g l?1 biocatalyst concentration, both at 271 μM dibenzothiophene concentration which is comparable to similar wild-type biocatalysts.  相似文献   

11.
In this study, a method for the efficient production of dehydroepiandrosterone (DHEA) from phytosterols in a vegetable oil/aqueous two-phase system by Mycobacterium sp. was developed. After the 3-hydroxyl group of phytosterols was protected, they could be converted into DHEA with high yield and productivity by Mycobacterium sp. NRRL B-3683. In a shake flask biotransformation, 15.05 g l?1 of DHEA and a DHEA yield of 85.39% (mol mol?1) were attained after 7 days with an initial substrate concentration of 25 g l?1. When biotransformation was carried out in a 30-l stirred bioreactor with 25 g l?1 substrate, the DHEA concentration and yield was 16.33 g l?1 and 92.65% (mol mol?1) after 7 days, respectively. The results of this study suggest that inexpensive phytosterols could be utilized for the efficient production of DHEA.  相似文献   

12.
Giant reed, miscanthus, and switchgrass are considered prominent lignocellulosic feedstocks to obtain fermentable sugars for biofuel production. The bioconversion into sugars requires a delignifying pre-treatment step followed by hydrolysis with cellulase and other accessory enzymes like xylanase, especially in the case of alkali pre-treatments, which retain the hemicellulose fraction. Blends richer in accessory enzymes than commercial mix can be obtained growing fungi on feedstock-based substrates, thus ten selected Trichoderma isolates, including the hypercellulolytic strain Trichoderma reesei Rut-C30, were grown on giant reed, miscanthus, or switchgrass-based substrates. The produced enzymes were used to saccharify the corresponding feedstocks, compared to a commercial enzymatic mix (6 FPU/g). Feedstocks were acid (H2SO4 0.2–2%, w/v) or alkali (NaOH 0.02–0.2%, w/v) pre-treated. A microplate-based approach was chosen for most of the experimental steps due to the large number of samples. The highest bioconversion was generally obtained with Trichoderma harzianum Or4/99 enzymes (78, 89, and 94% final sugar yields at 48 h for giant reed, miscanthus, and switchgrass, respectively), with significant increases compared to the commercial mix, especially with alkaline pre-treatments. The differences in bioconversion yields were only partially caused by xylanases (maximum R 2 = 0.5), indicating a role for other accessory enzymes.  相似文献   

13.
Chiral lactic acid and its ester derivatives are crucial building blocks and platforms in the generation of high value-added drugs, fine chemicals and functional materials. Optically pure D-lactic acid and its ester derivatives cannot be directly generated from fermentation and are quite expensive. Herein, we identified, heterologously expressed and functionally characterized one Bacillus esterase BSE01701 from the deep sea of the Indian Ocean. Esterase BSE01701 could enzymatically resolve inexpensive racemic methyl lactate and generate chiral D-methyl lactate. The enantiomeric excess of desired chiral D-methyl lactate and the substrate conversion could reach over 99 % and 60 %, respectively, after process optimization. Notably, the addition of 60 % (v/v) organic co-solvent heptane could greatly improve both the enantiomeric excess of D-methyl lactate and the conversion. BSE01701 was a very promising marine microbial esterase in the generation of chiral chemicals in industry.  相似文献   

14.
Calculations are made using the equations Δr G = Δr H ? TΔr S and Δr X = Δr H ? Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  ? H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   

15.
The glucoamylase from Aspergillus niger, immobilized into poly(vinylalcohol) hydrogel lens-shaped capsules LentiKats®, was used for simultaneous saccharification and fermentation (SSF) with Zymomonas mobilis in free form. This system was stable in both the repeated batch and continuous mode of SSF. The microorganism was found to adsorb on the capsules with immobilized enzyme. This increased the ethanol productivity of the repeated batch system with 5% w/v of immobilized glucoamylase almost 2.1 times (7.2 g l?1 h?1) compared to free enzyme–free microorganism system (3.5 g l?1 h?1). The continuous SSF with the immobilized glucoamylase (11.5% w/v) tested for 15 days had productivity 10 g l?1 h?1, which is comparable to continuous experiments on semi-defined glucose medium (10 g l?1 h?1). These two systems were stable in both glucoamylase activity and microorganism productivity.  相似文献   

16.
The reuse of waste as well as the production of biodegradable compounds has for years been the object of studies and of global interest as a way to reduce the environmental impact generated by unsustainable exploratory processes. The conversion of linear processes into cyclical processes has environmental and economic advantages, reducing waste deposition and reducing costs. The objective of this work was to use biopolymer extraction waste in the cultivation of Spirulina sp. LEB 18, for the cyclic process of polyhydroxybutyrate (PHB) synthesis. Concentrations of 10, 15, 20, 25, and 30% (v/v) of biopolymer extraction waste were tested. For comparison, two assays were used without addition of waste, Zarrouk (SZ) and modified Zarrouk (ZM), with reduction of nitrogen. The assays were carried out in triplicate and evaluated for the production of microalgal biomass and PHB. The tests with addition of waste presented a biomass production statistically equal to ZM (0.79 g L?1) (p?<?0.1). The production of PHB in the assay containing 25% of waste was higher when compared to the other cultivations, obtaining 10.6% (w/w) of biopolymer. From the results obtained, it is affirmed that the use of PHB extraction waste in the microalgal cultivation, aiming at the synthesis of biopolymers, can occur in a cyclic process, reducing process costs and the deposition of waste, thus favoring the preservation of the environment.  相似文献   

17.
Corn silage is used as high-energy forage for dairy cows and more recently for biogas production in a process of anaerobic co-digestion with cow manure. In this work, fresh corn silage after the harvest was used as a substrate in solid-state fermentations with T. versicolor with the aim of phenolic acid recovery and enzyme (laccase and manganese peroxidase) production. During 20 days of fermentation, 10.4-, 3.4-, 3.0-, and 1.8-fold increments in extraction yield of syringic acid, vanillic acid, p-hydroxybenzoic acid, and caffeic acid, respectively, were reached when compared to biologically untreated corn silage. Maximal laccase activity was gained on the 4th day of fermentation (V.A. = 180.2 U/dm3), and manganese peroxidase activity was obtained after the 3rd day of fermentation (V.A. = 30.1 U/dm3). The addition of copper(II) sulfate as inducer during solid state fermentation resulted in 8.5- and 7-fold enhancement of laccase and manganese peroxidase activities, respectively. Furthermore, the influence of pH and temperature on enzyme activities was investigated. Maximal activity of laccase was obtained at T = 50 °C and pH = 3.0, while manganese peroxidase is active at temperature range T = 45–70 °C with the maximal activity at pH = 4.5.  相似文献   

18.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

19.
In a majority of environments, microbes live as interacting communities. Microbial communities are composed of a mix of microbes with often unknown functions. Polymicrobial diseases represent the clinical and pathological manifestations induced by the presence of multiple infectious agents. These diseases are difficult to diagnose and treat and usually are more severe than monomicrobial infections. The interaction relationship between Enterococcus faecalis and Escherichia coli was researched using a Calvet calorimeter. Three mixtures of both bacteria were prepared in the following proportions: 20 + 80 % (0.2 mL E. faecalis + 0.8 mL E. coli), 50 + 50 % (0.5 mL E. faecalis + 0.5 mL E. coli) and 80 + 20 % (0.8 mL E. faecalis + 0.2 mL E. coli). Experiments were carried out at concentration of 106 CFU mL?1 and a constant temperature of 309.65 K. The differences in shape of graph of E. faecalis, E. coli and their mixtures were compared. Also, the thermokinetic parameters such as detection time (t d), growth constant (k), generation time (G) and the amount of heat released (Q) were calculated.  相似文献   

20.
Bioethanol was produced using polysaccharide from soybean residue as biomass by separate hydrolysis and fermentation (SHF). This study focused on pretreatment, enzyme saccharification, and fermentation. Pretreatment to obtain monosaccharide was carried out with 20% (w/v) soybean residue slurry and 270 mmol/L H2SO4 at 121 °C for 60 min. More monosaccharide was obtained from enzymatic hydrolysis with a 16 U/mL mixture of commercial enzymes C-Tec 2 and Viscozyme L at 45 °C for 48 h. Ethanol fermentation with 20% (w/v) soybean residue hydrolysate was performed using wild-type and Saccharomyces cerevisiae KCCM 1129 adapted to high concentrations of galactose, using a flask and 5-L fermenter. When the wild type of S. cerevisiae was used, an ethanol production of 20.8 g/L with an ethanol yield of 0.31 g/g consumed glucose was obtained. Ethanol productions of 33.9 and 31.6 g/L with ethanol yield of 0.49 g/g consumed glucose and 0.47 g/g consumed glucose were obtained in a flask and a 5-L fermenter, respectively, using S. cerevisiae adapted to a high concentration of galactose. Therefore, adapted S. cerevisiae to galactose could enhance the overall ethanol fermentation yields compared to the wild-type one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号