首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mature microRNAs (miRNAs) in extracellular vesicles (EVs) are involved in different stages of cancer progression, yet it remains challenging to precisely detect mature miRNAs in EVs due to the presence of interfering RNAs (such as longer precursor miRNAs, pre-miRNAs) and the low abundance of tumor-associated miRNAs. By leveraging the size-selective ability of DNA cages and polyethylene glycol (PEG)-enhanced thermophoretic accumulation of EVs, we devised a DNA cage-based thermophoretic assay for highly sensitive, selective, and in situ detection of mature miRNAs in EVs with a low limit of detection (LoD) of 2.05 fM. Our assay can profile EV mature miRNAs directly in serum samples without the interference of pre-miRNAs and the need for ultracentrifugation. A clinical study showed that EV miR-21 or miR-155 had an overall accuracy of 90 % for discrimination between breast cancer patients and healthy donors, which outperformed conventional molecular probes detecting both mature miRNAs and pre-miRNAs. We envision that our assay can advance EV miRNA-based diagnosis of cancer.  相似文献   

2.
3.
Polyethylene glycol (PEG)-modified amino acid surfactant-based vesicles were prepared to improve the stability and cellular delivery of drugs. The vesicles comprised PEG-2000, sodium N-lauroylsarcosinate hydrate (SNLS), 1-decanol, and deionized water. The complex showed vesicular structures that were almost the same as the original vesicles, and their size distribution was (100–150 nm). Transmission electron microscopy (TEM) results revealed that no fusion occurred at 1.25 wt.% PEG concentration. The steric hindrance present among the vesicles prevented aggregation of the particles. No visual phase separation was observed for 6 months at room temperature 28?ºC. At higher molar concentration of PEG, fusion and wrinkling occurred owing to the association of PEG chains. The decreasing bending curvature led to the formation of fused vesicles with multilayer structure, as revealed by TEM and differential scanning calorimetry (DSC).  相似文献   

4.
《Analytical letters》2012,45(1):196-206
Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) along with UV-Vis was used to distinguish between structural differences between a normal human breast cell line (MCF-12 F) and a cancerous breast cell line (MCF-7) after both being treated with conjugated gold nanoparticles and unconjugated gold nanoparticles. The MCF-7 cell line possessed a small amount of epidermal growth factor receptors (EGFR) on its cell surface whereas the MCF-12 F cell line did not. The anti-EGFR antibodies blocked the binding of epidermal growth factors to this receptor which plays an important role in the regulation of cell growth, proliferation, and differentiation. The infrared (IR) spectra for both cell lines yield several differences between normal biological samples and cancerous samples. As the malignancy of the sample increases, the peak intensity and wavenumber positions decrease. The same conclusion was drawn from thin-layers of conjugated nanoparticles and nonconjugated nanoparticles. The presence of conjugated nanoparticles increased the peak intensity of the MCF-7 cell line whereas it decreased the peak intensity for the MCF-12 F cell line. UV-Vis was used to show the presence of the anti-EGFR antibodies on the surface of the gold nanoparticles which was 5 nm red shifted compared to the gold nanoparticles solution.  相似文献   

5.
Radiolabeled molecules have an important role to evaluate tumor characteristics such as aggressiveness, and to identify the effectiveness of cancer treatments such as chemotherapy and radiotherapy. Various radionuclide (18F, 99mTc, 124I) labeled molecules can be used apoptosis detection by estimating decrescendos cell viability after therapy. 99mTc-tetrofosmin which is used as a myocardial perfusion imaging agent in routine and at the same time is known to accumulate in various tumors including breast tumor. The aim of this study was to assess the utility of 99mTc-tetrofosmin for monitoring the early response of MCF-7 breast cancer to chemotherapy. To evaluate the role of 99mTc-tetrofosmin in vitro chemotherapy, the uptake ratio was determined using MCF-7 breast cancer line after the cells had been treated with cisplatin. When we examined the apoptotic ratios which induced with different dose of cisplatin in MCF-7 breast cancer cells by using Annexin V and TUNEL methods, it was observed that the rate of apoptosis increased with soaring dose. The uptake rates of 99mTc-tetrofosmin in MCF-7 cell line in the chemotherapeutic groups were lower than it is in the control group (p < 0.01). The negative correlation between uptake ratios and apoptotic rates shows that 99mTc-tetrofosmin may be used a radiopharmaceutical for evaluating chemotherapy response. 99mTc-tetrofosmin might be probably useful as an imaging agent for estimation of early chemotherapy response in breast cancer.  相似文献   

6.
This research aims to investigate the interaction between phytohemagglutinin-L (PHA-L) and sialic acid, which is abundant on the breast cancer cell (MCF-7) surface and displays monosaccharide characteristics, by experimental and computational methods. Experimentally, CdSe/CdS nanoparticles (QDs) were synthesized; PHA-L was conjugated with QDs and labeled with 125I. Radiolabeling yield was found to be 97 ± 1.2 %. Afterwards, in vitro bioaffinities of radiolabeled PHA-L conjugated QDs have been investigated on MCF-7 cells and it has been observed that the cell incorporation increased with time. The results indicated that 125I labeled QD-PHA-L conjugates represent significant affinity on MCF-7 cells. In the second step of the study, the crystal structure of carbohydrate interaction surface of PHA-L was extracted from the crystal structure of PHA-L. The interactions between this surface and sialic acid were calculated by computational tools. These calculations revealed specific interactions between PHA-L and sialic acid. Semi-empirical methods, PM3 and AM1, were used in these calculations. Significant outcomes have been obtained from the experimental and computational studies and these results demonstrated that PHA-L may be an effective agent for imagining MCF-7 cells.  相似文献   

7.
Breast cancer is the most common cancer among women worldwide. Chemotherapy followed by endocrine therapy is the standard treatment strategy after surgery or radiotherapy. However, breast cancer is highly resistant to the treatments leading to the recurrence of breast cancer. As a result, the development of alternative medicines derived from natural plants with fewer side effects is being emphasized. Andrographolide isolated from Andrographis paniculata is one of the potential substances with anti-cancer properties in a variety of cell types, including breast cancer cells. This study aims to investigate the anti-cancer effects of andrographolide in breast cancer cells by evaluating cell viability and apoptosis as well as its underlying mechanisms through estrogen receptor (ER)-dependent and PI3K/AKT/mTOR signaling pathways. Cell viability, cell apoptosis, mRNA or miRNA, and protein expression were examined by MTT assay, Annexin V-FITC, qRT-PCR, and Western blot analysis, respectively. MCF-7 and MDA-MB-231 cell viability was reduced in a concentration- and time-dependent manner after andrographolide treatment. Moreover, andrographolide induced cell apoptosis in both MCF-7 and MDA-MB-231 cells by inhibiting Bcl-2 and enhancing Bax expression at both mRNA and protein levels. In MCF-7 cells, the ER-positive breast cancer, andrographolide showed an inhibitory effect on cell proliferation through downregulation of ERα, PI3K, and mTOR expression levels. Andrographolide also inhibited MDA-MB-231 breast cancer cell proliferation via induction of cell apoptosis. However, the inhibition of MCF-7 and MDA-MB-231 cell proliferation of andrographolide treatment did not disrupt miR-21. Our findings showed that andrographolide possesses an anti-estrogenic effect by suppressing cell proliferation in MCF-7 cells. The effects were comparable to those of the anticancer drug fulvestrant in MCF-7 cells. This study provides new insights into the anti-cancer effect of andrographolide on breast cancer and suggests andrographolide as a potential alternative from the natural plant for treating breast cancer types that are resistant to tamoxifen and fulvestrant.  相似文献   

8.
Carbon monoxide (CO) is an important signaling molecule which plays significant roles in the pathogenesis of cancer. CO is produced by enzymatic degradation of heme in mammals. Heme oxygenase 1 (HO-1) catalyzes the breakdown of heme into CO, ferrous iron, and biliverdin. CO induces HO-1 and inhibits cell proliferation. Cancer cells exposed to several stress factors (hypoxia, reactive oxygen species, cis-platin, and oxidative stress), and HO-1 displays cytoprotective role against oxidative stress and inhibits apoptosis, metastases, angiogenesis, and cell proliferation processes. Therefore, metal containing CO-releasing molecules (CORMs) have been designed as an effective cancer treatment strategy. CORMs are responsible for releasing controlled amounts of CO to cells and tissues. Thus, we synthesized [Mn(CO)3(bpy)L]X manganese containing CORMs [bpy = 2,2′-bipyridine, X = hexafluorophosphate (PF6), trifluoromethanesulfonate (OTf), L = imidazole, methylimidazole, benzimidazole, N-benzylbenzimidazole, N-(4-chlorobenzyl)benzimidazole] to release CO in human invasive ductal breast (MCF-7) cell line. In vitro experiments indicated that the compounds inhibited cell proliferation and exhibited cytotoxic effect on breast cancer cells. Moreover, side groups of the compounds enhanced the anticancer effects in MCF-7 cell line. These manganese containing CORMs gave promising results and may be used as a drug template for effective treatment of invasive ductal breast carcinoma.  相似文献   

9.
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy. However, traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties, as it results in complicated synthesis process, inefficient photothermal effects and hindered NIR-mediated drug release. Herein we report a facile synthesis of a polyethylene glycol (PEG) linked liposome (PEG-liposomes) coated doxorubicin (DOX)-loaded ordered mesoporous carbon (OMC) nanocomponents (PEG-LIP@OMC/DOX) by simply sonicating DOX and OMC in PEG-liposomes suspensions. The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size (600±15 nm), a negative surface potential (-36.70 mV), high drug loading (131.590 mg/g OMC), and excellent photothermal properties. The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells (MCF-7) and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity, confirming the PEG-LIP@OMC itself has excellent biocompatibility. The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release. Furthermore, cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemotherapy can provide higher therapeutic efficacy than respective monotherapies. With these excellent features, we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.  相似文献   

10.
《中国化学快报》2020,31(12):3158-3162
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy. However, traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties, as it results in complicated synthesis process, inefficient photothermal effects and hindered NIR-mediated drug release. Herein we report a facile synthesis of a polyethylene glycol (PEG) linked liposome (PEG-liposomes) coated doxorubicin (DOX)-loaded ordered mesoporous carbon (OMC) nanocomponents (PEG-LIP@OMC/DOX) by simply sonicating DOX and OMC in PEG-liposomes suspensions. The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size (600 ± 15 nm), a negative surface potential (−36.70 mV), high drug loading (131.590 mg/g OMC), and excellent photothermal properties. The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells (MCF-7) and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity, confirming the PEG-LIP@OMC itself has excellent biocompatibility. The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release. Furthermore, cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemotherapy can provide higher therapeutic efficacy than respective monotherapies. With these excellent features, we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.  相似文献   

11.
This paper describes a method for producing silica particles containing multiple quantum dots (QD/SiO2), a method for surface-modifying the particles with poly(ethylene glycol) (QD/SiO2/PEG), and an in vivo fluorescence imaging technique using colloid solution of the QD/SiO2/PEG particles. The QDs used were ZnS-coated CdSexTe1?x nanoparticles surface-modified with carboxyl groups, and had an average size of 10.3 ± 2.1 nm. The QD/SiO2 particles were fabricated by performing sol–gel reaction of tetraethyl orthosilicate using NaOH as a catalyst in the presence of the QDs. The produced particles formed core–shell structure composed of multiple QDs and silica shell, and had an average size of 50.2 ± 17.9 nm. Surface-modification of the QD/SiO2 particles with PEG, or PEGylation of the particle surface, was performed by using methoxy polyethylene glycol silane. Fluorescence of QD colloid solution was not quenched even through the silica-coating and the PEGylation. Tissues of a mouse could be imaged by injecting the concentrated colloid solution into it and measuring fluorescence intensity emitted from the tissues.  相似文献   

12.
5, 10, 15, Triphenyl-20-p-phenoxy benzoic acid porphyrins (P) containing Zn (ZnP), Ga (GaP), and Si (SiP) were synthesized and conjugated to pluronic-silica (PluS) nanoparticles (NPs) where the fluorescence and singlet oxygen generating behavior of the porphyrins were investigated. The highest singlet oxygen quantum yield (ΦΔ) was obtained for ZnP. When the porphyrins were conjugated to the PluS NPs, the ΦΔ was quenched and fluorescence was enhanced. The pore size of the NPs upon conjugation decreased from 18.9 nm for PluS NPs to 2.4 nm (for ZnP as an example) as determined by applying the Brunauer–Emmett–Teller method. The porphyrin complexes and their conjugates were tested for their photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. It was found that ZnP and its conjugate showed the highest PDT activity. The p > 0.05 indicated that ZnP is significantly different than GaP and SiP.  相似文献   

13.
This study was designed to investigate the combination effects of brucine and gemcitabine, each with anticancer properties, in MCF-7 human breast cancer cells in culture. With regard to cell viability, effects of both the drugs and their combinations were inversely proportional to dose and time. For various proportional drug combinations studied, combination effects were analysed using CompuSyn software. The analyses revealed synergistic and/or additive effects regarding cell viability, anchorage-independent growth and cell migration. Combination analyses exhibited diversified impacts of the type of combination treatment, namely pretreatment with either drug followed by exposure to the other, or treatment with both drugs at the same time. Compared with untreated cells, combination treatment of asynchronised MCF-7 cells resulted in 17.2 × decrease in G2 phase, increasing G1 (2.1 × ) and S (1.5 × ) phase cells in cell cycle analysis. Brucine, either individually or in combination, but not gemcitabine, inhibited NF-kB subunit (p65) expression in MCF-7 cells.  相似文献   

14.
A series of novel azo compounds with extended π-conjugated systems were prepared by azo coupling reaction compounds trans-2-(4′-aminostyryl)-thiophene, 1-(4-aminophenyl)-4-phenyl-1,3-butadiene and 4-amino-4′-methoxystilbene with some phenols. The compounds were evaluated for their cytotoxicity against breast cancer adenocarcinoma (MCF-7), cervix adenocarcinoma (HeLa) and human embryonic kidney (HEK 293) cell lines using the MTT assay. The results showed all derivatives had more toxic effects than tamoxifen. Of all the compounds tested, the azo product obtained from coupling trans-2-(4′-Aminostyryl)-thiophene with 2-naphthol (compound 5b) exhibited the potent in vitro antiproliferative activity with IC50 27 ± 1 and 18 ± 0 µg/mL against MCF-7 and HeLa cell lines, respectively, while it was devoid of any cytotoxicity against normal HEK 293 cells even at 200 µg/mL.  相似文献   

15.
Co(III) complex with a 2-hydrazonylthiazole ligand was synthesized and characterized by single-crystal X-ray diffraction. In the inner sphere of the complex, two monoionic ligands are coordinated tridentately forming octahedral geometry around Co(III). Activity of the complex was investigated on MCF-7 breast cancer cell line, with cisplatin (CDDP) as a reference compound. Results showed that after 24-h incubation, Co(III) complex revealed stronger cytotoxic activity compared to CDDP. Treatment of MCF-7 3-D cell model with the complex at 10 μM concentration achieved complete suppression of spheroid growth in almost the same extent as at 100 μM. In combination treatments on MCF-7 spheroids, the complex acted synergistically with CDDP, while additive interaction type was achieved when the complex was applied together with paclitaxel.  相似文献   

16.
Poly(ethylene glycol)-poly(lactic acid) copolymer, prepared by ring opening polymerization, was used as a single platform to co-deliver both hydrophilic doxorubicin and hydrophobic docetaxel (DTX) in a simulated physiological environment. The average size of the negatively charged drug loaded polymeric micelles were found to be 293 nm. The drug loading (%) and encapsulation efficiency (%) were calculated to be 1.21 and 59.0, respectively. The in vitro cytotoxicity test using MCF7 breast cancer cells was conducted using 1 × 104 cells in 10% FBS and 1% antibiotic, and the absorbance of formazan was evaluated at 570 nm. Cell growth inhibition by MTT assay showed viability of 33% of the MCF7 cells after treatment with drug-loaded micelles for 48 h. Controlled release of drugs from the polymeric micelles indicated a burst release effect initially; whereas, 98% of drug could be released at pH 7.4 within a time period of 96 h. Time period for drug release shorten to 48 h only in simulated mild acidic pH (5.4) condition. The in vitro drug release study from micelles indicated synergistic cytotoxicity effect in human metastatic breast cancer MCF7 cell.  相似文献   

17.
Four new manganese(III) Schiff base complexes (1–4) were synthesized and characterized. The complexes have general formula [MnClLx] in which L represents a Schiff base ligand derived from condensation of meso-1,2-diphenyl-1,2-ethylenediamine with salicylaldehyde or its 3-OMe-, 5-Br-, or 5-OMe-derivatives (x = 1–4, respectively). The crystal structure of [MnClL1] (1) was characterized by X-ray crystallography. The in vitro anticancer activity of these complexes was evaluated by MTT and apoptosis assays against human breast (MCF-7) and liver (Hep G2) cancer cells. The complexes exhibited considerable antiproliferative activity against both cell lines (IC50 = 10.8–21.02 μM) comparable to cis-platin, except 4 (MCF-7). The highest activity was found for 1 with IC50 values of 13.62 μM (MCF-7) and 10.8 μM (Hep G2). Flow cytometry experiments showed that 1 induced apoptosis on MCF-7 tumor cell line. Docking simulations using AUTODOCK were also carried out. The results showed that all complexes fitted into the minor groove region of DNA.  相似文献   

18.
In this study, composites of high-density polyethylene (HDPE) with mesostructured cellular foam (MCF) silicas have been prepared by melt mixing and studied for the first time. Two different MCF silica analogues having different pore size were used, i.e., 12 nm (MCF-12) and 50 nm (MCF-50). The MCF content in the mesocomposites was 1, 2.5, 5, and 10 mass%. All HDPE/MCF-50 mesocomposites exhibited improved mechanical properties compared with neat HDPE, indicating that the mesocellular silica foam particles with the large mesopore size can act as efficient reinforcing agents. On the other hand, the MCF-12 silica with the smaller size mesopores induced inferior mechanical properties, mainly due to the poorer dispersion of the silica particles and the formation of large aggregates. The mesocellular silica foam particles also affected the thermal properties and the crystallization characteristics of HDPE. Crystallization of mesocomposites was faster than that of neat HDPE. Crystallization kinetics was analyzed with the Avrami equation for both isothermal and non-isothermal conditions. For isothermal crystallization, the Avrami exponent increased with increasing crystallization temperature from 2 to 3. In non-isothermal crystallization, the values of the Avrami exponent increased from 3 to 6.3 with decreasing cooling rate. Lower activation energy values of non-isothermal crystallization were calculated using the isoconversional method of Friedman, as well as using the Kissinger’s equation. Finally, the nucleation efficiency of the mesocellular silica foam particles was estimated from data associated with non-isothermal crystallization, according to the method of Dobreva.  相似文献   

19.
Exosomes are a subset of secreted lipid envelope-encapsulated extracellular vesicles (EVs) of 50–150 nm diameter that can transfer cargo from donor to acceptor cells. In the current purification protocols of exosomes, many smaller and larger nanoparticles such as lipoproteins, exomers and microvesicles are typically co-isolated as well. Particle size distribution is one important characteristics of EV samples, as it reflects the cellular origin of EVs and the purity of the isolation. However, most of the physicochemical analytical methods today cannot illustrate the smallest exosomes and other small particles like the exomers. Here, we demonstrate that diffusion ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) method enables the determination of a very broad distribution of extracellular nanoparticles, ranging from 1 to 500 nm. The range covers sizes of all particles included in EV samples after isolation. The method is non-invasive, as it does not require any labelling or other chemical modification. We investigated EVs secreted from milk as well as embryonic kidney and renal carcinoma cells. Western blot analysis and immuno-electron microscopy confirmed expression of exosomal markers such as ALIX, TSG101, CD81, CD9, and CD63 in the EV samples. In addition to the larger particles observed by nanoparticle tracking analysis (NTA) in the range of 70–500 nm, the DOSY distributions include a significant number of smaller particles in the range of 10–70 nm, which are visible also in transmission electron microscopy images but invisible in NTA. Furthermore, we demonstrate that hyperpolarized chemical exchange saturation transfer (Hyper-CEST) with 129Xe NMR indicates also the existence of smaller and larger nanoparticles in the EV samples, providing also additional support for DOSY results. The method implies also that the Xe exchange is significantly faster in the EV pool than in the lipoprotein/exomer pool.

Diffusion and xenon NMR based methods to determine a very broad range of sizes and sub-sets of extracellular vesicles.  相似文献   

20.
The protein phenotypes of extracellular vesicles (EVs) have emerged as promising biomarkers for cancer diagnosis and treatment monitoring. However, the technical challenges in rapid isolation and multiplexed molecular detection of EVs have limited their clinical practice. Herein, we developed a magnetically driven tandem chip to achieve streamlined rapid isolation and multiplexed profiling of surface protein biomarkers of EVs. Driven by magnetic force, the magnetic nanomixers not only act as tiny stir bars to promote mass transfer and enhance reaction efficiency of EVs, but also transport on communicating vessels of the tandem chip continuously and expedite the assay workflow. We designed cyclic surface enhancement of Raman scattering (SERS) tags to bind with target EVs and then release them by exonuclease I, eliminating steric hindrance and amplifying the SERS signal of multiple protein biomarkers on EVs. Due to the excellent assay performance, six breast cancer biomarkers were detected simultaneously on EVs using only 10 μL plasma within 1.5 h. The unweighted SUM signature offers great accuracy in discriminating breast cancer patients from healthy donors. Overall, the dynamic magnetic driving tandem chip offers a new avenue to advance the clinical application of EV-based liquid biopsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号