首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
This paper implies production of cellulase and xylanase enzyme using a potent strain of Trichoderma harzianum for the efficient deinking of photocopier waste papers. Different nutritional and environmental factors were optimized for higher production of cellulase along with xylanase. After fermentation, maximum enzyme extraction was achieved from fermented matter using a three-step extraction process with increased efficiency by 26.6–29.3 % over single-step extraction. Static solid state was found as the best fermentation type using wheat bran (WB) as carbon source and ammonium ferrous sulfate (0.02 M) as nitrogen source. Subsequently, inoculum size (8?×?106 CFU/gds), incubation days (4 days), temperature (34 °C), initial pH (6.0), and moisture ratio (1:3) significantly affected the enzyme production. Cellulase and xylanase activities were found to be maximum at pH 5.5 and temperature 55–60 °C with good stability (even up to 6 h). Furthermore, this crude enzyme was evaluated for the deinking of photocopier waste papers without affecting the strength properties with improved drainage as an additional advantage. The crude enzyme-deinked pulp showed 23.6 % higher deinking efficiency and 3.2 % higher brightness than chemically deinked pulp. Strength properties like tensile, burst indices, and folding endurance were also observed to improve by 6.7, 13.4, and 10.3 %, respectively, for enzyme-deinked pulp. However, the tear index was decreased by 10.5 %. The freeness of the pulp was also increased by 21.6 % with reduced drainage time by 13.9 %.  相似文献   

2.
Tannase can be used in different industrial sectors such as in food (juices and wine) and pharmaceutical production (trimethoprim) because it catalyses the hydrolysis of hydrolysable tannins. The aim of the current study is to assess the tannase found in the crude extract of Saccharomyces cerevisiae CCMB 520, and to set its catalytic and thermodynamic properties. The enzyme was optimally active at pH 6.0 and temperature 30 °C. Tannase was activated by Na+, Ca2+, K+ at 5 × 10?3 mol/L. The half-life at 30 °C was 3465.7 min. The activation energy was 40.32 kJ/mol. The Gibbs free energy, enthalpy and entropy at 30 °C were 85.40, 48.10 and ?0.12 kJ/mol K, respectively. Our results suggest that the tannase found in the crude extract of S. cerevisiae is an attractive enzyme for industrial applications, such as for beverage manufacturing and gallic acid production, due its catalytic and thermodynamic properties (heat-stable and resistant to metal ions).  相似文献   

3.
Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2 % NaOH with autoclave, which was composed of 59.7 % cellulose, 21.6 % hemicellulose, and 12.3 % lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1 % of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5 % of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33 % and 19.11 %, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.  相似文献   

4.
Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9?±?20.1 U/g, FPase 101.1?±?3.5 U/g and β-glucosidase 99?±?4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0–9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92–98 %.  相似文献   

5.
Water hyacinth (Eichhornia crassipes), an aquatic weed common to the subtropic/tropical regions, was utilized as an inexpensive lignocellulosic substrate for production of cellulase by Trichoderma reesei. The effects of process parameters like substrate pretreatment, substrate concentration, initial medium pH, mode of inoculation, and incubation temperature on cellulase production were investigated. Under optimal conditions, a maximal cellulase activity of 0.22 ± 0.04 IU/ml (approximately 73.3 IU/g cellulose) was recorded at the end of 15-day incubation period. Specific activity of the enzyme was 6.25 IU/mg protein. Hydrolysis of 1% substrate (water hyacinth) using crude enzyme dosage of 1.2 IU/g water hyacinth showed 28.7% saccharification in 1 h. The observations in present study indicate that saccharification of cellulose from water hyacinth was significantly higher by laboratory-produced cellulase than the commercial blend.  相似文献   

6.
Waste copier paper is a potential substrate for the production of glucose relevant for manufacture of platform chemicals and intermediates, being composed of 51 % glucan. The yield and concentration of glucose arising from the enzymatic saccharification of solid ink-free copier paper as cellulosic substrate was studied using a range of commercial cellulase preparations. The results show that in all cellulase preparations examined, maximum hydrolysis was only achieved with the addition of beta-glucosidase, despite its presence in the enzyme mixtures. With the use of Accellerase® (cellulase), high substrate loading decreased conversion yield. However, this was overcome if the enzyme was added between 12.5 and 20 FPU g substrate?1. Furthermore, this reaction condition facilitated continual stirring and enabled sequential additions (up to 50 % w/v) of paper to be made to the hydrolysis reaction, degrading nearly all (99 %) of the cellulose fibres and increasing the final concentration of glucose whilst simultaneously making high substrate concentrations achievable. Under optimal conditions (50 °C, pH 5.0, 72 h), digestions facilitate the production of glucose to much improved concentrations of up to 1.33 mol l?1.  相似文献   

7.
A bacterial strain isolated from soil and identified as Enterobacter cloacae had been found to be capable of producing both intra and extracellular β-d-galactosidase.The intracellular enzyme was thermostable and its optimum temperature, pH and time for enzyme—substrate reaction were found to be 50?°C, 9.0 and 5 min respectively, using ONPG as substrate. The maximum β-galactosidase production in shake flask was achieved at 30?°C, pH 7.0, incubation time 72 h using 50 ml medium in 250 ml Erlenmeyer flask. Only Mg2+ stimulated the activity of enzyme. Cetyl trimethyl ammonium bromide showed stimulatory effect on catalytic activity of the enzyme whereas EDTA inhibited enzyme activity. The enzyme retained its activity upto 55?°C after incubating at that temperature for 1 h.The maximum activity of crude intracellular enzyme was 14.35 IU/mg of protein. The K m and V max values of β-galactosidase using ONPG as substrate at 50?°C were 2.805 mM and 37.45?×?10?3?mM/min/mg, respectively.  相似文献   

8.
A crude cellulase preparation from Aspergillus niger was used to depolymerize chitosan. The depolymerization process was followed by measuring the apparent viscocity and the intrinsic viscosity. The optimum conditions for enzymatic hydrolysis were investigated. On the selected optimum conditions (pH 5.0, temperature 50 °C, and an enzyme to substrate ratio of 1:5), chitosan was hydrolyzed for 1, 4, 8, and 24 h, its viscosity-average molecular weights were 3.49 × 104, 1.18 × 104, 5.83 × 103, and 1.13 × 103, respectively. Compared with chitosan having viscosity-average molecular weight of 5.18 × 105 before enzymatic hydrolysis, the crude cellulase preparation had rather apparent effect on depolymerization of chitosan. Through the comparison of different origin of cellulases, the prepared cellulase has good ability of enzymatic hydrolysis. The reproducibility and reversibility for enzymatic hydrolysis was appraised. The data are of value for the production of low-molecular weight chitosans and chitooligomers of medical and biotechnological interest.  相似文献   

9.
Acinetobacter strain PS12B was isolated from marine sediment and was found to be a good candidate to degrade agar and produce agarase enzyme. The extracellular agarase enzyme from strain PS12B was purified by ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography. The specific activity of the crude enzyme which was 1.52 U increased to 45.76 U, after two-stage purification, with an enzyme yield of 9.76%. Purified enzyme had a molecular mass of 24 kDa. The optimum pH and temperature for activity of purified agarase were found to be 8.0 and 40 °C, respectively. The Km and Vmax values for agarase were 4.69 mg/ml and 0.5 μmol/min, respectively. Treatment with EDTA reduced the agarase activity by 58% at 5 mM concentration. The enzyme activity was stimulated by the presence of Fe2+, Mn2+, and Ca2+ ions while reducing reagents (β-mercaptoethanol and dithiothreitol, DTT) enhanced its activity by 30–40%. The purified agarase exhibited tolerance to both detergents and organic solvents. Major hydrolysis products of agar were DP4 and also a mixture of longer oligosaccharides DP6 and DP7. The enzyme hydrolysed seaweed (Gracilaria verrucosa) exhibited strong antioxidant activity in vitro. Successful hydrolysis of seaweed indicates the potential use of the enzyme to produce seaweed hydrolysate having health benefits as well as the industrial application like the production of biofuels.  相似文献   

10.
The present investigation highlights the optimal conditions for production of a non-toxic, bi-functional fibrinolytic enzyme xylarinase produced by endophytic fungus Xylaria curta by solid substrate fermentation using rice chaff medium. The purified enzyme is a monomeric protein with a molecular mass of ~33 kDa. The enzyme exhibits cleavage of Aα and Bβ chains of fibrin(ogen) and has no effect on γ chain. The optimal fibrinolytic activity of the enzyme was observed at 35 °C and pH 8. The fibrinolytic activity was enhanced in the presence of Ca2+, whereas it was completely inhibited in the presence of Fe2+ and Zn2+ ions and inhibitors like EDTA and EGTA suggesting it to be a metalloprotease. The K m and V max of the enzyme for azocasein were 326 μM and 0.13 μM min?1. The N-terminal sequence of the enzyme (SNGPLPGGVVWAG) was same when compared to xylarinase isolated from culture broth of X. curta. Thus, xylarinase could be exploited as a potent clot busting enzyme which could be produced on large scale using solid substrate fermentation.  相似文献   

11.
Potato starch processing waste is causing serious environmental problems. This study aimed to convert potato starch processing waste into single-cell protein as high-quality feed using a two-step fermentation process. The mutant strain Aspergillus niger H3 was selected after UV irradiation and ethyl methyl sulfone mutagenesis for more cellulase production. The activities of sodium carboxymethyl cellulase and filter paperase of strain H3 were 8.86 and 4.79 U, respectively, which were much higher than the parent strain (1.18 and 0.62 U). After treatment with strain H3, the cellulose degradation rate of potato residue was 80.54 %. A liquid fermentation using Bacillus licheniformis was performed as the second step. The optimized fermentation conditions were temperature of 32.8 °C, pH 6.67, and inoculum concentration of 1.78 % using the response surface method. Results of this study showed a potential application in large-scale industrial conversion.  相似文献   

12.
Horticultural waste in wood chips form collected from a landscape company in Singapore was utilized as the substrate for the production of cellulase and hemicellulase under solid-state fermentation by Trichoderma reesei RUT-C30. The effects of substrate pretreatment methods, substrate particle size, incubation temperature and time, initial medium pH value, and moisture content on cellulase and hemicellulase production were investigated. Enzyme complex was obtained at the optimal conditions. This enzyme mixture contained FPase (15.0 U/g substrate dry matter, SDM), CMCase (90.5 U/g SDM), β-glucosidase (61.6 U/g SDM), xylanase (52.1 U/g SDM), and β-xylosidase (10.4 U/g SDM). The soluble protein concentration in the enzyme complex was 26.1 mg/g SDM. The potential of the crude enzyme complex produced was demonstrated by the hydrolysis of wood chips, wood dust, palm oil fiber, and waste newspaper. The performance of the crude enzyme complex was better than the commercial enzyme blend.  相似文献   

13.
The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn+2, significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour.  相似文献   

14.
A hyaluronate lyase was obtained by cultivating Arthrobacter globiformis strain A152. The enzyme was purified to homogeneity from the supernatant by ammonium sulfate fractionation, Q Sepharose Fast Flow, and Sephadex G-100 chromatography. The purification resulted in a 32.78-fold increase in hyaluronate lyase activity with specific activity of 297.2 U/mg. The molecular weight of the enzyme determined by SDS-PAGE was approximately 73.7 kDa. Using hyaluronic acid (HA) as a substrate, the maximal reaction rate (Vmax) and the Michaelis–Menten constant (Km) of hyaluronate lyase were found to be 4.76 μmol/min/ml and 0.11 mg/ml, respectively. The optimum pH and temperature values for hyaluronate lyase activity were pH 6.0 and 42 °C, respectively. This enzyme was stable at pH 4–10, 5–7, and 5–7 at 4, 37, and 42 °C, respectively. Investigation about temperature effects on hyaluronate lyase displayed that it was stable at 30–37 °C and also showed high activity at 37 °C. The enzymatic activity was enhanced by Ca2+ and was strongly inhibited by Cu2+ and SDS. These properties suggested that the hyaluronate lyase in this study could bring promising prospects in medical and industry applications.  相似文献   

15.
Paper mill sludge is a solid waste material generated from pulping and papermaking operations. Because of high glucan content and its well-dispersed structure, paper mill sludges are well suited for bioconversion into value-added products. It also has high ash content originated from inorganic additives used in papermaking, which causes hindrance to bioconversion. In this study, paper mill sludges from Kraft process were de-ashed by a centrifugal cleaner and successive treatment by sulfuric acid and sodium hydroxide, and used as a substrate for cellulase production. The treated sludge was the only carbon source for cellulase production, and predominantly inorganic nutrients were used as the nitrogen source for this bioprocess. The cellulase enzyme produced from the de-ashed sludge exhibited cellulase activity of 8 filter paper unit (FPU)/mL, close to that obtainable from pure cellulosic substrates. The yield of cellulase enzyme was 307 FPU/g glucan of de-ashed sludge. Specific activity was 8.0 FPU/mg protein. In activity tests conducted against the corn stover and α-cellulose, the xylanse activity was found to be higher than that of a commercial cellulase. Relatively high xylan content in the sludge appears to have induced high xylanase production. Simultaneous saccharification and fermentation (SSF) was performed using partially de-ashed sludge as the feedstock for ethanol production using Sacharomyces cerevisiae and the cellulase produced in-house from the sludge. With 6% (w/v) glucan feed, ethanol yield of 72% of theoretical maximum and 24.4 g/L ethanol concentration were achieved. These results were identical to those of the SSF using commercial cellulases.  相似文献   

16.
Microbial-derived surfactants are molecules of great interest due to their environmentally friendly nature and low toxicity; however, their production cost is not competitive when compared to synthetics. Marine microorganisms are exposed to extremes of pressure, temperature, and salinity; hence, they can produce stable compounds under such conditions that are useful for industrial applications. A screening program to select marine bacteria able to produce biosurfactant using low-cost substrates (mineral oil, sucrose, soybean oil, and glycerol) was conducted. The selected bacterial strain showed potential to synthesize biosurfactants using mineral oil as carbon source and was identified as Brevibacterium luteolum. The surface-active compound reduced the surface tension of water to 27 mN m?1 and the interfacial tension (water/hexadecane) to 0.84 mN m?1 and showed a critical micelle concentration of 40 mg L?1. The biosurfactant was stable over a range of temperature, pH, and salt concentration and the emulsification index (E24) with different hydrocarbons ranging from 60 to 79 %. Structural characterization revealed that the biosurfactant has a lipopeptide nature. Sand washing removed 83 % of crude oil demonstrating the potential of the biosurfactants (BS) for bioremediation purposes. The new marine B. luteolum strain showed potential to produce high surface-active and stable molecule using a low-cost substrate.  相似文献   

17.
Fructooligosaccharides (FOS) and levan attract much attention due to a wide range of applications in food technology and pharmaceutical and cosmetic industry. Bacillus licheniformis ANT 179, isolated from Antarctica soil, produced levansucrase and levan in a medium containing sucrose as carbon substrate. In this study, characterization of levansucrase and production of short-chain FOS and levan were investigated. Temperature and pH optimum of the enzyme were found to be 60 °C and pH 6.0, respectively. The optimization of fermentation conditions for levan production using sugarcane juice by response surface methodology (RSM) was carried out. Central composite rotatable design was used to study the main and the interactive effects of medium components: sugarcane juice and casein peptone concentration on levan production by the bacterium. The optimized medium with sugarcane juice at 20 % (v/v) and casein peptone at 2 % (w/v) was found to be optimal at an initial pH of 7.0 and incubation temperature of 35 °C for 48 h. Under these conditions, the maximum levan concentration was 50.25 g/L on wet weight basis and 16.35 g/L on dry weight basis. The produced inulin type FOS (kestose and neokestose) and levan were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis. The study revealed that the levansucrase could form FOS from sucrose. The locally available low-cost substrate such as sugarcane juice in the form of a renewable substrate is proposed to be suitable even for scale-up production of enzyme and FOS for industrial applications. The levan and FOS synthesized by the bacterium are suitable for food applications and biomedical uses as the bacterium has GRAS status and devoid of endotoxin as compared to other Gram-negative bacteria.  相似文献   

18.
Mixed food waste, which was directly collected from restaurants without pretreatments, was used as a valuable feedstock in succinic acid (SA) fermentation in the present study. Commercial enzymes and crude enzymes produced from Aspergillus awamori and Aspergillus oryzae were separately used in hydrolysis of food waste, and their resultant hydrolysates were evaluated. For hydrolysis using the fungal mixture comprising A. awamori and A. oryzae, a nutrient-complete food waste hydrolysate was generated, which contained 31.9 g L?1 glucose and 280 mg L?1 free amino nitrogen. Approximately 80–90 % of the solid food waste was also diminished. In a 2.5 L fermentor, 29.9 g L?1 SA was produced with an overall yield of 0.224 g g?1 substrate using food waste hydrolysate and recombinant Escherichia coli. This is comparable to many similar studies using various wastes or by-products as substrates. Results of this study demonstrated the enormous potential of food waste as renewable resource in the production of bio-based chemicals and materials via microbial bioconversion.  相似文献   

19.

Background

Previous studies have demonstrated that members of Trichoderma are able to generate appreciable amount of extracellular amylase and glucoamylase on soluble potato starch. In this study the α-amylase was purified and characterized from Trichoderma pseudokoningii grown on orange peel under solid state fermentation (SSF).

Results

Five α-amylases A1-A5 from Trichodrma pseudokoningii were separated on DEAE-Sepharose column. The homogeneity of α-amylase A4 was detected after chromatography on Sephacryl S-200. α-Amylase A4 had molecular weight of 30 kDa by Sephacryl S-200 and SDS-PAGE. The enzyme had a broad pH optimum ranged from 4.5 to 8.5. The optimum temperature of A4 was 50 °C with high retention of its activity from 30 to 80 °C. The thermal stability of A4 was detected up to 50 °C and the enzyme was highly stable till 80 °C after 1 h incubation. All substrate analogues tested had amylase activity toward A4 ranged from 12 to 100% of its initial activity. The Km and Vmax values of A4 were 4 mg starch/ml and 0.74 μmol reducing sugar, respectively. The most of metals tested caused moderate inhibitory effect, except of Ca2+ and Mg2+ enhanced the activity. Hg2+ and Cd+?2 strongly inhibited the activity of A4. EDTA as metal chelator caused strong inhibitory effect.

Conclusions

The properties of the purified α-amylase A4 from T. pseudokoningii meet the prerequisites needed for several applications.
  相似文献   

20.
In order to find an alternative for commercial inulinase, a strain XL01 identified as Penicillium sp. was screened for inulinase production. The broth after cultivated was centrifuged, filtered, and used as crude enzyme for the following saccharification. At pH 5.0 and 50 °C, the crude enzyme released 84.9 g/L fructose and 20.7 g/L glucose from 120 g/L inulin in 72 h. In addition, simultaneous saccharification and fermentation of chicory flour for d-lactic acid production was carried out using the self-produced crude inulinase and Lactobacillus bulgaricus CGMCC 1.6970. A high d-lactic acid titer and productivity of 122.0 g/L and 1.69 g/(L h) was achieved from 120 g/L chicory flour in 72 h. The simplicity for inulinase production and the high efficiency for d-lactic acid fermentation provide a perspective and profitable industrial biotechnology for utilization of the inulin-rich biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号