首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Antioxidant properties and angiotensin-converting enzyme (ACE) inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle, with different degrees of hydrolysis (DH) from 5 to 25 %, prepared by treatment with crude proteases extract from smooth hound intestines, were investigated. Goby protein hydrolysates (GPHs) are rich in Gly and Thr, which accounted for 14.1–15 % and 11.6–13.2 % of the total amino acids, respectively. The antioxidant activities of GPHs were investigated by using several in vitro assay systems. All GPHs exhibited significant metal chelating activity and DPPH free radical-scavenging activity, and inhibited linoleic acid peroxidation. For the ACE-inhibitory activity, as the DH increased, the activity of GPHs increased. The obtained results revealed that antioxidant and ACE-inhibitory activities of GPHs were influenced by the degree of hydrolysis. A medium degree of enzymatic hydrolysis was appropriate to obtain GPHs with good antioxidant activity, while small peptides were essential to obtain high ACE inhibitory activity.  相似文献   

2.
In this work, chicken and fish peptides were obtained using the proteolytic enzymes α-Chymotrypsin and Flavourzyme. The muscle was hydrolyzed for 4 h, and the resulting peptides were evaluated. Hydrolysates were produced from Argentine croaker (Umbrina canosai) with a degree of hydrolysis (DH) of 25.9 and 27.6 % and from chicken (Gallus domesticus) with DH of 17.8 and 20.6 % for Flavourzyme and α-Chymotrypsin, respectively. Membrane ultrafiltration was used to separate fish and chicken hydrolysates from Flavourzyme and α-Chymotrypsin based on molecular weight cutoff of >1,000, <1,000 and >500, and <500 Da, to produce fractions (F1,000, F1,000–500, and F500) with antioxidant activity. Fish hydrolysates produced with Flavourzyme (FHF) and α-Chymotrypsin showed 60.8 and 50.9 % of peptides with a molecular weight of <3 kDa in its composition, respectively. To chicken hydrolysates produced with Flavourzyme and α-Chymotrypsin (CHC) was observed 83 and 92.4 % of peptides with a molecular weight of <3 kDa. The fraction that showed, in general, higher antioxidant potential was F1,000 from FHF. When added 40 mg/mL of FHF and CHC, 93 and 80 % of lipid oxidation in ground beef homogenates was inhibited, respectively. The composition of amino acids indicated higher amino acids hydrophobic content and amino acids containing sulfuric residues for FHF, which showed antioxidant potential.  相似文献   

3.
The aims of this study were to purify and characterize a bacteriocin produced by a strain of Enterococcus faecalis TG2 and to test the safety of the strain. In this work, the active peptide was purified through precipitation with 70% saturated ammonium sulfate, cation-exchange chromatography, and gel filtration. The specific activity of purified bacteriocin was 30,073.42 AU/mg of protein, which corresponded to a 33.34-fold increase. The molecular mass of the purified bacteriocin was 6.3362 kDa determined by LC-MS/MS. The ten amino acid of N-terminal was MTRSKKLNLR and the ten amino acid of C-terminal was ATGGAAGWKS. The activity of the bacteriocin was unaffected by pH 2–10 and thermostable but was sensitive to proteolytic enzymes. The antimicrobial activity of the bacteriocin was not affected by metal ions. Tween-20, Tween-80, Triton X-100, and EDTA did not affect the bacteriocin activity and SDS was able to increase the activity of bacteriocin. Bacteriocin activity was not lost after treatment by < 8% NaCl. Inhibitory spectrum of the bacteriocin showed a wide range of activities against other lactic acid bacteria, food-spoilage, and food-borne pathogens. Ent. faecalis TG2 was sensitive to tetracycline and erythromycin but resistant to ampicillin, gentamicin, kanamycin, and chloramphenicol. Results from PCR indicated that Ent. faecalis TG2 did not harbor any virulence genes. The study suggests that Ent. faecalis TG2 and its bacteriocin might be used as bio-preservatives in food products.  相似文献   

4.
The application of alkaline phytase as a feed additive is restricted by the poor specific activity. Escherichia coli is a frequently used host for directed evolution of proteins including alkaline phytase towards improved activity. However, it is not suitable for production of food-grade products due to potential pathogenicity. To combine the advantages of different expression systems, mutants of the alkaline phytase originated from Bacillus subtilis 168 (phy168) were first generated via directed evolution in E. coli and then transformed to food-grade hosts B. subtilis and Pichia pastoris for secretory expression. In order to investigate the suitability of different expression systems, the phy168 mutants expressed in different hosts were characterized and compared in terms of specific activity, pH profile, pH stability, temperature profile, and thermostability. The specific activity of B. subtilis-expressed D24G/K70R/K111E/N121S mutant at pH 7.0 and 60 °C was 30.4 U/mg, obviously higher than those in P. pastoris (22.7 U/mg) and E. coli (19.7 U/mg). Moreover, after 10 min incubation at 80 °C, the B. subtilis-expressed D24G/K70R/K111E/N121S retained about 70 % of the activity at pH 7.0 and 37 °C, whereas the values were only about 25 and 50 % when expressed in P. pastoris and E. coli, respectively. These results suggested B. subtilis as an appropriate host for expression of phy168 mutants and that the strategy of creating mutants in one host and expressing them in another might be a new solution to industrial production of proteins with desired properties.  相似文献   

5.
O-glycosylation-site characterization of individual glycoproteins is a major challenge because of the heterogeneity of O-glycan core structures. In proteomic studies, O-glycosylation-site analysis is even more difficult because of the complexity of the sample. In this work, we designed a rapid and convenient workflow for characterizing the O-glycosylation sites of individual proteins and the human-plasma proteome. A mixture of exoglycosidases was used to partially remove O-glycan chains and leave an N-acetylgalacosamine (GalNAc) residue attached to the Ser or Thr residues. The O-glycosylated peptides could then be identified by using liquid chromatography–tandem mass spectrometry (LC–MS–MS) to detect the 203 Da mass increase. Jacalin was used to selectively isolate O-GalNAc glycopeptides before LC–MS–MS analysis, which is optional for individual proteins and necessary for complex human-plasma proteins. Bovine fetuin and human chorionic gonadotropin (hCG) were used to test the analytical workflow. The workflow indicated superior sensitivity by not only covering most previously known O-glycosylation sites but also discovering several novel sites. Using only one drop of blood, a total of 49 O-GalNAc-linked glycopeptides from 36 distinctive glycoproteins in human plasma were identified unambiguously. The approach described herein is simple, sensitive, and global for site analysis of core 1 through core 4 O-glycosylated proteins.  相似文献   

6.
The present study reports the synthesis of silver nanoparticles (Ag NPs) from silver nitrate solution using leaf extracts of Commiphora caudata. The formation of Ag NPs in the colloidal solution is confirmed by UV–Vis spectroscopy analysis. The identification of biomolecules is analyzed through fourier transform infrared spectroscopy. X-ray diffraction pattern shows that an average particle size of the synthesized nanoparticles are in the range of 40–24 nm. Field emission scanning electron microscopy and transmission electron microscopy confirm the formation Ag NPs in spherical shape. The photoluminescence study of the synthesized Ag NPs interprets the influence of C caudata leaf concentrations on emission behavior. Zeta potential measurement is carried out to determine the stability of synthesized Ag NPs. GC–MS analysis revealed that the C. caudata contained 11 compounds, such as Stigmasterol (24.14 %), Hexacosanoic acid, methyl ester (15.13 %) and 2-bromophenyl morpholine-4-carboxylate (11.71 %). The antibacterial activity of Ag NPs shows that these bio capped Ag NPs have higher inhibitory action for Escherichia coli, Klebsiella pheumoniea, Micrococcus flavus, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Staphylococcus aureus.  相似文献   

7.
A novel application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) with continuous Ar cluster beams to peptide analysis was investigated. In order to evaluate peptide structures, it is necessary to detect fragment ions related to multiple neighbouring amino acid residues. It is, however, difficult to detect these using conventional ToF-SIMS primary ion beams such as Bi cluster beams. Recently, C60 and Ar cluster ion beams have been introduced to ToF-SIMS as primary ion beams and are expected to generate larger secondary ions than conventional ones. In this study, two sets of model peptides have been studied: (des-Tyr)-Leu-enkephalin and (des-Tyr)-Met-enkephalin (molecular weights are approximately 400 Da), and [Asn1 Val5]-angiotensin II and [Val5]-angiotensin I (molecular weights are approximately 1,000 Da) in order to evaluate the usefulness of the large cluster ion beams for peptide structural analysis. As a result, by using the Ar cluster beams, peptide molecular ions and large fragment ions, which are not easily detected using conventional ToF-SIMS primary ion beams such as Bi3 +, are clearly detected. Since the large fragment ions indicating amino acid sequences of the peptides are detected by the large cluster beams, it is suggested that the Ar cluster and C60 ion beams are useful for peptide structural analysis.  相似文献   

8.
Recently, poly(3-hydroxybutyrate) (PHB) has been found in a few thermophilic strains where several advantages can be gained from running fermentation at high temperatures. Caldimonas manganoxidans, a thermophilic gram-negative bacterium, was investigated for the feasibility as a PHB-producing strain. It is suggested that the best fermentation strategy for achieving the highest PHB concentration of 5.4?±?1.1 g/L (from 20 g/L glucose) in 24 h is to use the fermentation conditions that are favored for the bacterial growth, yet temperature and pH should be chosen at conditions that are favored for the PHB content. Besides, the above fermentation conditions produce PHB that has a high molecular weight of 1274 kDa with a low polydispersity index (PDI) of 1.45, where the highest Mw of PHB of 1399?kDa (PDI of 1.32) is obtained in this study. To the best knowledge of authors, C. manganoxidans has the best PHB productivity among the thermophiles and is comparable to those common PHB-producing mesophiles.  相似文献   

9.
The coconut kernel-associated fungus, Lasiodiplodia theobromae VBE1, was grown on coconut cake with added coconut oil as lipase inducer under solid-state fermentation conditions. The extracellular-produced lipases were purified and resulted in two enzymes: lipase A (68,000 Da)—purified 25.41-fold, recovery of 47.1%—and lipase B (32,000 Da)—purified 18.47-fold, recovery of 8.2%. Both lipases showed optimal activity at pH 8.0 and 35 °C, were activated by Ca2+, exhibited highest specificity towards coconut oil and p-nitrophenyl palmitate, and were stable in iso-octane and hexane. Ethanol supported higher lipase activity than methanol, and n-butanol inactivated both lipases. Crude lipase immobilized by entrapment within 4% (w/v) calcium alginate beads was more stable than the crude-free lipase preparation within the range pH 2.5–10.0 and 20–80 °C. The immobilized lipase preparation was used to catalyze the transesterification/methanolysis of coconut oil to biodiesel (fatty acyl methyl esters (FAMEs)) and was quantified by gas chromatography. The principal FAMEs were laurate (46.1%), myristate (22.3%), palmitate (9.9%), and oleate (7.2%), with minor amounts of caprylate, caprate, and stearate also present. The FAME profile was comparatively similar to NaOH-mediated transesterified biodiesel from coconut oil, but distinctly different to petroleum-derived diesel. This study concluded that Lasiodiplodia theobromae VBE1 lipases have potential for biodiesel production from coconut oil.  相似文献   

10.
Acinetobacter strain PS12B was isolated from marine sediment and was found to be a good candidate to degrade agar and produce agarase enzyme. The extracellular agarase enzyme from strain PS12B was purified by ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography. The specific activity of the crude enzyme which was 1.52 U increased to 45.76 U, after two-stage purification, with an enzyme yield of 9.76%. Purified enzyme had a molecular mass of 24 kDa. The optimum pH and temperature for activity of purified agarase were found to be 8.0 and 40 °C, respectively. The Km and Vmax values for agarase were 4.69 mg/ml and 0.5 μmol/min, respectively. Treatment with EDTA reduced the agarase activity by 58% at 5 mM concentration. The enzyme activity was stimulated by the presence of Fe2+, Mn2+, and Ca2+ ions while reducing reagents (β-mercaptoethanol and dithiothreitol, DTT) enhanced its activity by 30–40%. The purified agarase exhibited tolerance to both detergents and organic solvents. Major hydrolysis products of agar were DP4 and also a mixture of longer oligosaccharides DP6 and DP7. The enzyme hydrolysed seaweed (Gracilaria verrucosa) exhibited strong antioxidant activity in vitro. Successful hydrolysis of seaweed indicates the potential use of the enzyme to produce seaweed hydrolysate having health benefits as well as the industrial application like the production of biofuels.  相似文献   

11.
12.
Pathogen reduction technologies (PRT) are photochemical processes that use a combination of photosensitizers and UV-light to inactivate pathogens in platelet concentrates (PCs), a blood-derived product used to prevent hemorrhage. However, different studies have questioned the impact of PRT on platelet function and transfusion efficacy, and several proteomic analyses revealed possible oxidative damages to proteins. The present work focused on the oxidative damages produced by the two main PRT on peptides. Model peptides containing residues prone to oxidation (tyrosine, histidine, tryptophane, and cysteine) were irradiated with a combination of amotosalen/UVA (Intercept process) or riboflavin/UVB (Mirasol-like process). Modifications were identified and quantified by liquid chromatography coupled to tandem mass spectrometry. Cysteine-containing peptides formed disulfide bridges (R-SS-R, ?2 Da; favored following amotosalen/UVA), sulfenic and sulfonic acids (R-SOH, +16 Da, R-SO3H, +48 Da, favored following riboflavin/UVB) upon treatment and the other amino acids exhibited different oxidations revealed by mass shifts from +4 to +34 Da involving different mechanisms; no photoadducts were detected. These amino acids were not equally affected by the PRT and the combination riboflavin/UVB generated more oxidation than amotosalen/UVA. This work identifies the different types and sites of peptide oxidations under the photochemical treatments and demonstrates that the two PRT may behave differently. The potential impact on proteins and platelet functions may thus be PRT-dependent.
Fig. a
?  相似文献   

13.
Decomposition has been studied in the chemistry of perfluoropolyethers (PFPE), thus far no molecular structure information is reported. TG-MS is a tool to follow the off gassing of decomposition for clues. We selected two PFPEs that have different properties: Krytox® XHT-1000 and Fomblin Z60 heating to normal decomposition and catalytic decomposition in the presence of alumina powder. Comparing the decomposition fragment intensities, the molecular structure of the branched Krytox® XHT-1000 oil is more stable than the blocky Fomblin Z60. We see aluminum-containing fluorine fragments in the rapid decomposition of oils in contact with alumina powder. It has been suggested the formation of Al(O6?n F n ), where n = 1, 2, and 3, in which the fluorine atoms are selectively associated with aluminum atom. The major decomposition products are small and large fragments of fluorocarbons and perfluoroalkoxy. In the absence of alumina powder, Krytox XHT-1000 shows only a loss of 13 mass/% after several hours at 330 °C, whereas in the presence of 1 mass/% alumina powder the oil has rapidly decomposed to 67 mass/% of its original mass within 15 min. Fomblin Z60, a product might not be designed for high temperature, exposing to the same conditions at 330 °C for several hours and shows a loss of 98 mass/% alone, but in the presence of 1 mass/% alumina powder shows a loss of 98 mass/% in 3.6 min. When 3 mass/% of two new developmental additives were added to the both oils, the catalytic decomposition in the presence of 1 mass/% alumina powder was significantly reduced in Krytox® XHT-1000, showing only a loss of 23 mass/% in 4 h, but nearly all weight for Z60 in 60 min. In the oil grades that contain the new additives, we see the fragments of Al–O–S, and F–Al–O–S. The sulfur-containing compound has been reported ionically bonded to oxide in a tripod configuration of alumina surface, which shields the formation of Al–F.  相似文献   

14.
In peptide sequencing experiments involving a single step tandem mass acquisition, leucine and isoleucine are indistinguishable because both are characterized by a 113 Da mass difference from the other peptide fragments in the MS2 spectrum. In this work, we propose a new method to distinguish between these two amino acids in consecutive MSn experiments, exploiting a gas-phase fragmentation of isoleucine that leads to a diagnostic 69 Da ion. We used this method to assess the Leu/Ile residues of several synthetic peptides. The procedure was then tested on a tryptic digest of myoglobin, assigning the correct amino acid in the majority of the peptides. This work was performed with an old and low-resolution instrument, thus demonstrating that our method is suitable for a wide number of ion trap mass spectrometers, not necessarily expensive or up-to-date.  相似文献   

15.
Lysozymes are known as ubiquitously distributed immune effectors with hydrolytic activity against peptidoglycan, the major bacterial cell wall polymer, to trigger cell lysis. In the present study, the full-length cDNA sequence of a novel sea urchin Strongylocentrotus purpuratus invertebrate-type lysozyme (sp-iLys) was synthesized according to the codon usage bias of Pichia pastoris and was cloned into a constitutive expression plasmid pPIC9K. The resulting plasmid, pPIC9K-sp-iLys, was integrated into the genome of P. pastoris strain GS115. The bioactive recombinant sp-iLys was successfully secreted into the culture broth by positive transformants. The highest lytic activity of 960 U/mL of culture supernatant was reached in fed-batch fermentation. Using chitin affinity chromatography and gel-filtration chromatography, recombinant sp-iLys was produced with a yield of 94.5 mg/L and purity of >?99%. Recombinant sp-iLys reached its peak lytic activity of 8560 U/mg at pH 6.0 and 30 °C and showed antimicrobial activities against Gram-negative bacteria (Vibrio vulnificus, Vibrio parahemolyticus, and Aeromonas hydrophila) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). In addition, recombinant sp-iLys displayed isopeptidase activity which reached the peak at pH 7.5 and 37 °C with the presence of 0.05 M Na+. In conclusion, this report describes the heterologous expression of recombinant sp-iLys in P. pastoris on a preparative-scale, which possesses lytic activity and isopeptidase activity. This suggests that sp-iLys might play an important role in the innate immunity of S. purpuratus.  相似文献   

16.
Eu(III) and Tb(III) Schiff base complexes are applicable in various fields such as sensing, assays, screening protocols in vitro, and imaging studies in vitro or in vivo. Fluorescent europium and terbium complexes and their interaction with cell penetrating peptide (KKKRKC) can represent an excellent key for understanding pathway of peptide transportation though cell membrane and the application of Schiff base complexes as potential antibacterial drugs. The Schiff base–metal complexes and its conjugates with peptide were tested for their antibacterial activity against Pseudomonas aeruginosa and Salmonella typhimurium. Schiff base–metal complexes conjugated with peptide show minor toxicity in normal human PNT1A cells and high antibacterial activity against P. aeruginosa and S. typhimurium, where IC50 down to 125.9 and/or 36.1 µM were found for P. aeruginosa and S. typhimurium, respectively. Our results strongly suggest that Schiff base–metal complexes conjugated with peptide have great potential to be developed into highly effective antibacterial drug.  相似文献   

17.
Medicinal plants are a significant source of biological active and health protective compounds. Post-harvest treatments can affect, in different ways, the content and biological activity of such compounds. One of the most common post-harvesting methods is drying. In this study, we investigated the effect of drying method on the content of natural pigments (chlorophylls, carotenoids and anthocyanins) and on the antioxidant capacity of two traditionally used herbs, the Melissa officinalis (lemon balm) and the Urtica dioica (stinging nettle) both of them landraces collected from plants grown in Nitra region, West of Slovakia. The freeze-dried samples of both herbs exhibited the highest content of chlorophyll a (7.55 ± 0.13 mg/g dry mass for lemon balm and 9.41 ± 0.17 mg/g dry mass for stinging nettle), chlorophyll b (3.12 ± 0.28 mg/g dry mass for lemon balm and 3.34 ± 0.24 mg/g dry mass for stinging nettle) and carotenoids (2.11 ± 0.24 mg/g dry mass for lemon balm and 2.62 ± 0.06 mg/g dry mass for stinging nettle). The content of chlorophylls and carotenoids correlated with the DPPH antioxidant (radical scavenging) capacity. Higher antioxidant capacity of the lemon balm extracts compared to nettle samples was attributed to the higher content of polyphenol compounds anthocyanins. Despite the higher cost, the freeze drying (lyophilisation) was recommended as the most suitable drying method, mainly for reasons of preserving maximum pigment content and antioxidant capacity.  相似文献   

18.
In this study, a series of binary mixtures of N-butyl stearate (nBS) and methyl palmitate (MP) were used to produce a novel composite phase change material (CPCM) for potential application in the eastern China, and their thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC indicated that the mixture consisting of 10 mass% nBS and 90 mass% MP is optimum as the CPCM in terms of the phase change temperature ranges (T f = 19.74–5.59 °C; T m = 18.34–33.80 °C) and latent heats (ΔH f = 176.8 J g?1; ΔH m = 189.3 J g?1). On the other hand, the thermal reliability and chemical stability of the CPCM after 120, 180, 240, 300, 360 and 500 accelerated thermal cycling tests were studied by DSC and fourier transform infrared (FTIR) analysis. The results demonstrated that the CPCM had good thermal reliability and chemical stability.  相似文献   

19.
Naringinase which was extracted from the fermented broth of Cryptococcus albidus was purified about 42-folds with yield 0.7% by sulfate fractionation and chromatography on Toyopearl HW-60, Fractogel DEAE-650-s, and Sepharose 6B columns. Molecular weight of protein determined by gel filtration and SDS-PAGE was 50 kDa. Naringinase of C. albidus includes high content of the dicarbonic and hydrophobic amino acids. Enzyme contains also carbohydrate component, represented by mannose, galactose, rhamnose, ribose, arabinose, xylose, and glucose. The enzyme was optimally active at pH 5.0 and 60 °C. Naringinase was found to exhibit specificity towards p-nitrophenyl-α-L-rhamnose, p-nitrophenyl-β-D-glucose, naringin, and neohesperidin. Its K m towards naringin was 0.77 mM and the V max was 36 U/mg. Naringinase was inhibited by high concentrations of reaction product—L-rhamnose. Enzyme revealed stability to 20% ethanol and 500 mM glucose in the reaction mixture that makes it possible to forecast its practical use in the food industry in the production of juices and wines.  相似文献   

20.
Abstract

Amphibian skin is known to secrete gene-encoded antioxidant peptides of small molecular weight, which play important roles in host defense. However, recognition of such peptides is still in its infancy. Here, we discovered a novel gene-encoded antioxidant peptide (named OM-GF17) from skin secretions of amphibian species, Odorrana margaretae. Produced by the post-translational processing of a 61-residue prepropeptide, the amino acid sequence of OM-GF17 was 'GFFKWHPRCGEEHSMWT', with a molecular mass of 2135.7?Da. Functional analysis revealed that OM-GF17 scavenged ABTS+, DPPH, NO and decreased iron oxidation. Our results also implied that five amino acid residues, including Cys, Pro, Met, Trp, and Phe, be related to the antioxidant activity of OM-GF17. Furthermore, OM-GF17 did not exhibit direct microbe-killing activity. This novel gene-encoded antioxidant peptide could help in the development of new antioxidant agents and increase our understanding of the biological functions of amphibian skin.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号