首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a novel flocculation strategy for harvesting Chlorella vulgaris with combined flocculants, poly (γ-glutamic acid) (γ-PGA) and calcium oxide (CaO), has been developed. The effect of flocculant dosage, the order of flocculant addition, mixing speed, and growth stage on the harvesting efficiency was evaluated. Results showed that the flocculation using combined flocculants significantly decreases the flocculant dosage and settling time compared with control. It was also found that CaO and γ-PGA influenced microalgal flocculation by changing the zeta potential of cells and pH of microalgal suspension. The most suitable order of flocculant addition was CaO first and then γ-PGA. The optimal mixing speed was 200 rpm for 0.5 min, followed by 50 rpm for another 4.5 min for CaO and γ-PGA with the highest flocculation efficiency of 95 % and a concentration factor of 35.5. The biomass concentration and lipid yield of the culture reusing the flocculated medium were similar to those when a fresh medium was used. Overall, the proposed method requires low energy input, alleviates biomass and water contamination, and reduces utilization of water resources and is feasible for harvesting C. vulgaris for biofuel and other bio-based chemical production.  相似文献   

2.
In this study, starches obtained from wheat, potato, and corn were used to synthesize cationic starches (CS), and the flocculation efficiency of these materials was tested with Chlorella pyrenoidosa and Botryococcus braunii cultures under different conditions. Our results indicated that these three CS had differing degrees of substitution following identical synthesis conditions. The various CS functioned similarly in this study, and the desired harmless flocculation efficiency was obtained at low dosages, with CS to microalgal biomass ratios of approximately 89 and 119 mg g?1 for C. pyrenoidosa and B. braunii, respectively. Impressive harmless harvesting efficiencies were obtained at lower dosages with respect to appropriate stirring time before the settling, with ratios ranging from 58 to 78 mg g?1 for C. pyrenoidosa cultures. The cost of microalgae harvesting can be cut dramatically by choosing cheaper starches prior to the synthetic CS and by applying suitable flocculation procedures.  相似文献   

3.
Bacillus vallismortis and Bacillus mojavensis were loaded onto Amberlite XAD-4 resin and used for solid phase extraction (SPE) of uranium(VI). A quick and simple UV–Vis spectrophotometric method was used to determine U(VI) ion. The best experimental conditions were determined as being a pH of 5.0; a sample flow rate of 2.0 mL min?1; 200.0 mg of biosorbent; 800 mg of Amberlite XAD-4, and 5.0 mL of 1 mol L?1 HCl as desorption solution for both immobilized bacteria. The preconcentration factors were achieved as 80 for both solid phase extractor. The developed methods were validated by applying to reference water and tea samples.  相似文献   

4.
The present study investigates the adsorption capability of raw and biochar forms of Chrysanthemum indicum flowers biomass to remove cobalt ions from aqueous solution in a fixed-bed column. Column adsorption experiments were conducted by varying the bed height (1.0, 2.0, 3.0 cm), flow rate (1.0, 2.5, 5.0 mL min?1) and initial cobalt ion concentration (25, 50, 75 mg L?1) to obtain the experimental breakthrough curves. The adsorption capacity of the raw and biochar forms of C. indicum flowers were found to be 14.84 and 28.34 mg g?1, respectively, for an initial ion concentration of 50 mg L?1 at 1.0 cm bed height and 1.0 mL min?1 flow rate for Co (II) ion adsorption. Adam–Bohart, Thomas and Yoon–Nelson models were applied to the experimental column data to analyze the column performance. The Thomas model was found to best represent the column data with the predicted and experimental uptake capacity values correlating well and with higher R 2 values for all the varying process parameters. Desorption studies revealed the suitability of the adsorbents for repeated use up to four adsorption–desorption cycles without significant loss in its efficiency. It can thus be inferred from the fixed-bed column studies that C. indicum flowers can suitably be used as an effective adsorbent for Co (II) ion removal from aqueous solution on a higher scale.  相似文献   

5.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   

6.
The hydrolytic species of lanthanide ions, La3+ and Sm3+, in water at I = 0.1 mol·dm?3 KCl ionic strength and temperatures of 298.15, 310.15 and 318.15 K were investigated by potentiometry. The hydrolytic species were modeled by the HySS simulation program. From the results, the hydrolytic species of each metal ion at different temperatures were calculated using the program HYPERQUAD2013. The hydrolysis constants (log10 β) of [La(OH)]2+ and La(OH)3 were calculated as ?8.52 ± 0.46, ?26.84 ± 0.48, and log10 β values of [Sm(OH)]2+, [Sm(OH)2]+, Sm(OH)3 were calculated as ?7.11 ± 0.21, ?15.84 ± 0.25 and ?23.44 ± 0.52 in aqueous media at 298.15 K, respectively. The dependence of the hydrolysis constants on the temperature allowed us to calculate the enthalpy, entropy, and Gibbs energy of hydrolysis values of each species.  相似文献   

7.
Microalgae were selected and isolated from acid mine drainage in order to find microalgae species which could be cultivated in low pH condition. In the present investigation, 30 microalgae were isolated from ten locations of acid mine drainage in South Korea. Four microalgae were selected based on their growth rate, morphology, and identified as strains of KGE1, KGE3, KGE4, and KGE7. The dry biomass of microalgae species ranged between 1 and 2 g L?1 after 21 days of cultivation. The growth kinetics of microalgae was well described by logistic growth model. Among these, KGE7 has the highest biomass production (2.05?±?0.35 g L?1), lipid productivity (0.82?±?0.14 g L?1), and C16–C18 fatty acid contents (97.6 %). These results suggest that Scenedesmus sp. KGE 7 can be utilized for biodiesel production based on its high biomass and lipid productivity.  相似文献   

8.
This work describes the development of a simple, fast and low-cost method for determining prazosin (PRA) in pharmaceutical samples by flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection using a boron-doped diamond film electrode. Electrochemical detection of PRA was optimized in phosphate buffer pH 4.0 by cyclic voltammetry, in which PRA presented two oxidation processes around at 0.97 and 1.40 V versus Ag/AgCl (3.0 mol L?1 KCl). In these conditions, PRA also showed one reduction process at ?0.75 V that is dependent on the oxidation processes. Thus, the determination of PRA by FIA-MPA detection consisted on the application of a two-potential waveform, E 1 (generator potential)?=?1.6 V/400 ms and E 2 (collector potential)?=??1.0 V/30 ms, with sample loop of 150 μL and flow rate of 3.0 mL min?1. The method showed good repeatability (RSD?<?3.0 %) and high analytical frequency (70 injections per h). The working linear range was obtained from 2 to 200 μmol L?1 with a limit of detection of 0.5 μmol L?1. The recovery tests in all samples were approximately 100 %, and the results were compared with chromatographic methods.  相似文献   

9.
Preliminary testing of dissolved air flotation (DAF) for wastewater treatment is presented. A combined coagulation-flocculation/DAF column system is used to remove oil and 60Co from nuclear industry wastewater. In this work, operational conditions and coagulant/flocculant concentrations are optimized by varying pH. Determinations of air-solids ratio (G/S), retention time (θ), pressure (P), volume of depressurized air–water mixture (V), turbidity and 60Co concentrations are reported. The effect of the treatment on the efficiency of separation of oily residues is also discussed. The results establish that the coagulant/flocculant system, formed by a modified polyamine (25 mgL?1) and a slightly cationic polyacrylamide (1.5 mgL?1), under specific operational conditions (pH = 7, mixing intensity Im1 = 300 s?1 and Im2 = 30 s?1), allowed the destabilization of colloidal matter, resulting in resistant flocs. It was concluded that by using G/S = 0.3, θ = 15 min, P = 620 kPa and V = 0.0012 m3, the greatest percentage removals of oil, turbidity, total cobalt and 60Co were obtained. These preliminary results then show that dissolved air flotation represents a good alternative for treatment of nuclear industry wastewater contaminated with radionuclides.  相似文献   

10.
Fructooligosaccharides and levan have a wide range of applications in the food industry due to their physiological and functional properties. The enzymatic synthesis of these molecules exhibits great advantages when compared with microbial fermentation. In this study, the production of levansucrase from Bacillus subtilis natto and its utilization in fructooligosaccharides and levan syntheses using different reaction conditions were described. The best condition for levansucrase production was 420.7 g L?1 of sucrose at pH 7.0, which reached 23.9 U ml?1 of transfructosylation activity. In a bioreactor, the highest production of fructooligosaccharides was 41.3 g L?1 using a medium containing 350 g L?1 sucrose at 35 °C for 36 h. The enzymatic synthesis of levan resulted in 86.9 g L?1 when conditions similar to those used for fructooligosaccharides synthesis were applied. These results indicate that the levansucrase from B. subtilis natto could be applied for the co-production of fructooligosaccharides and levan, which are biomolecules that have health benefits and are used successfully in the food industry.  相似文献   

11.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

12.
Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L?1 day?1 and the space-time productivity of 143.2 mmol L?1 h?1 g?1. The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.  相似文献   

13.
This paper is focused on a characterization of bacterial contamination in pool water of the interim spent fuel storage (JAVYS Inc.) in Slovak Republic and on bioaccumulation of 137Cs and 60Co by isolated bacteria. Bacterial community in pool water is kept on very low level by extremely low concentration of solutes in deionized water and by the efficient water filtration system. Based on standard methods and sequencing of 16S rDNA four pure bacterial cultures were identified as Kocuria palustris, Micrococcus luteus, Ochrobactrum spp. and Pseudomonas aeruginosa. Isolated aerobic bacteria were able to bioaccumulate 137Cs and 60Co in laboratory experiments. The mechanism of Co and Cs binding involve rapid interactions with anionic groups of the components of cell surface and in the case of Cs+ ions is followed by transport processes across cytoplasm membranes and by intracellular distribution. The maximum specific uptake of Cs+ after 48 h cultivation in mineral medium (MM) reached 7.54 ± 0.48 μmol g?1 dw (Ochrobactrum spp.), 19.6 ± 0.1 μmol g?1 dw (M. luteus) and 20.1 ± 2.2 μmol g?1 dw (K. palustris). The maximum specific uptake of Co2+ after 24 h cultivation in MM reached 31.1 ± 3.5 μmol g?1 dw (Ochrobactrum spp.), 86.6 ± 12.2 μmol g?1 dw (M. luteus) and 16.9 ± 1.2 μmol g?1 dw (K. palustris). These results suggest that due to the long lasting uptake of 137Cs, 60Co and other radionuclides by biofilm in pool water high specific radioactivities (Bq m?2) can be expected on stainless steel walls of pools.  相似文献   

14.
Since cultivations of Arthrospira platensis have a high water demand, it is necessary to develop treatment methods for reusing the exhausted medium that may prevent environmental problems and obtaining useful biomass. The exhausted Schlösser medium obtained from A. platensis batch cultivation in bench-scale mini-tanks was treated by varying concentrations of different coagulants, ferric chloride (6, 10, and 14 mg L?1) or ferric sulfate (15, 25, and 35 mg L?1) and powdered activated carbon (PAC, 30 and 50 mg L?1). Such treated effluent was restored with NaNO3 and reused in new cultivations of A. platensis performed in Erlenmeyer flasks. Reusing media through the cultivation of A. platensis showed satisfactory results, particularly in the medium treated with ferric chloride and PAC. The maximum cell concentration obtained in the flasks was 1093 mg L?1, which corresponded to the medium treated with ferric chloride (6 mg L?1) and PAC (30 mg L?1). This cellular growth was higher than in the medium treated with ferric sulfate and PAC, in which values of maximum cell concentration did not exceed 796 mg L?1. The cultures in the media after treatment did not modify the biomass composition. Thus, combined coagulation/adsorption processes, commonly used in water treatment processes, can be efficient and viable for treating exhausted medium of A. platensis, allowing the production of such biomass with the reduction of production cost and saving water.  相似文献   

15.
The speciation of Ra2+ and Ba2+ with EDTA was investigated at 25 °C in aqueous alkaline NaCl media as a function of ionic strength (0.2–2.5 mol·L?1) in two pH regions where the EDTA4? and HEDTA3? species dominate. The stability constants for the formation of the [BaEDTA]2? and [RaEDTA]2? complexes were determined using an ion exchange method. Barium-133 and radium-226 were used as radiotracers and their concentrations in the aqueous phase were measured using liquid scintillation counting and gamma spectrometry, respectively. The specific ion interaction theory (SIT) was used to account for [NaEDTA]3? and [NaHEDTA]2? complex formation, and used to extrapolate the logarithms of the apparent stability constants (log10 K) to zero ionic strength (BaEDTA2?: 9.86 ± 0.09; RaEDTA2?: 9.13 ± 0.07) and obtain the Ba2+ and Ra2+ ion interaction parameters: [ε(Na+, BaEDTA2?) = ? (0.03 ± 0.11); ε(Na+, RaEDTA2?) = ? (0.10 ± 0.11)]. It was found that in the pH region where HEDTA3? dominates, the reaction of Ba2+ or Ra2+ with the HEDTA3? ligand also results in the formation of the BaEDTA2? and RaEDTA2? complexes (as it does in the region where the EDTA4? ligand dominates) with the release of a proton. Comparison of the ion interaction parameters of Ba2+ and Ra2+ strongly indicates that both metal ions and their EDTA complexes have similar activity coefficients and undergo similar short-range interactions in aqueous NaCl media.  相似文献   

16.
With the problems related to chemical methods of pyruvic acid (PA) synthesis, a fast-growing interest has been observed in research aiming at reducing the production cost of PA by applying biotechnological methods. This study aimed to investigate the potential applicability of Yarrowia lipolytica Wratislavia 1.31 yeast strain for valorisation of pure and crude glycerol through the production of industrially desired PA. Conditions required for the effective PA biosynthesis, i.e., pH value, thiamine concentration, agitation, and substrate concentration, were examined in batch and fed-batch cultivation modes. The efficient production of PA occurred under the limitation of thiamine (1 µg L?1) and was stimulated by moderate pH (4.5) and agitation (800 rev min?1) of the culture. Under optimal conditions, Y. lipolytica Wratislavia 1.31 was able to produce 85.2 g L?1 of PA with volumetric productivity of 0.90 g L?1 h?1. The yield of PA biosynthesis reached a high level of 1.03 g g?1. Obtained results confirmed the aptitude of Y. lipolytica yeast to produce high amounts of PA from simple glycerol-containing media. Presented process was very promising and might be considered as an attractive alternative for currently used chemical methods of PA synthesis.  相似文献   

17.
Strain improvement and addition of sodium lactate to fermentation medium to enhance the productivity of spiramycin were performed. Of the sodium lactate tolerant mutants that were screened, one mutant, Streptomyces spiramyceticus 16-10-12, produced 23 % more spiramycin than the original strain, Streptomyces spiramyceticus 5-1. The effect of sodium lactate on spiramycin production with S. spiramyceticus 16-10-12 was studied. The titer was improved by 16.9 % with the addition of 15 g L?1 sodium lactate in the fermentation medium at the beginning. The results from using the new process in a 15 L bioreactor showed that there were more precursors in fermentation broth with a sodium lactate tolerant mutant, and that these precursors were used more than with the original strain. After adding sodium lactate, the titer was increased by 23.4 %, because the flux to TCA circulation was increased, more precursors had been produced and the activities of Acyl-CoA synthetases, Acylphosphotransferases and Acylkinases in synthesis phase were also increased.  相似文献   

18.
Growths of Lyngbya limnetica and Oscillatoria obscura were investigated at varying pH, light intensity, temperature, and trace element concentration with a view to optimize these parameters for obtaining the maximum carbohydrate content. The maximum growth for both strains was obtained at pH 9.0 and temperature 20 ± 3 °C using a light intensity of 68.0 μmol m?2 s?1 with continuous shaking. Growth under the nitrogen starvation condition affected the carbohydrate content more compared to the phosphorus starvation, and maximum concentrations were found as 0.660 and 0.621 g/g of dry biomass for L. limnetica and O. obscura, respectively. Under the optimized nitrogen-rich conditions, the specific growth rates for the two strains were found to be 0.187 and 0.215 day?1, respectively. The two-stage growth studies under nitrogen-rich (stage I) followed by nitrogen starvation (stage II) conditions were performed, and maximum biomass and carbohydrate productivity were found as 0.088 and 0.423 g L?1 day?1 for L. limnetica. This is the first ever attempt to evaluate and optimize various parameters affecting the growth of cyanobacterial biomass of L. limnetica and O. obscura as well as their carbohydrate contents.  相似文献   

19.
A potentiometric method has been used for the determination of the protonation constants of N-(2-hydroxyethyl)iminodiacetic acid (HEIDA or L) at various temperatures 283.15?≤?T/K?≤?383.15 and different ionic strengths of NaCl(aq), 0.12?≤?I/mol·kg?1?≤?4.84. Ionic strength dependence parameters were calculated using a Debye–Hückel type equation, Specific Ion Interaction Theory and Pitzer equations. Protonation constants at infinite dilution calculated by the SIT model are \( \log_{10} \left( {{}^{T}K_{1}^{\text{H}} } \right) = 8.998 \pm 0.008 \) (amino group), \( \log_{10} \left( {{}^{T}K_{2}^{\text{H}} } \right) = 2.515 \pm 0.009 \) and \( \log_{10} \left( {{}^{T}K_{3}^{\text{H}} } \right) = 1.06 \pm 0.002 \) (carboxylic groups). The formation constants of HEIDA complexes with sodium, calcium and magnesium were determined. In the first case, the formation of a weak complex species, NaL, was found and the stability constant value at infinite dilution is log10KNaL?=?0.78?±?0.23. For Ca2+ and Mg2+, the CaL, CaHL, CaL2 and MgL species were found, respectively. The calculated stability constants for the calcium complexes at T?=?298.15 K and I?=?0.150 mol·dm?3 are: log10βCaL?=?4.92?±?0.01, log10βCaHL?=?11.11?±?0.02 and \( \log_{10} \beta_{\text{Ca{L}}_{2}} \)?=?7.84?±?0.03, while for the magnesium complex (at I?=?0.176 mol·dm?3): log10βMgL?=?2.928?±?0.006. Protonation thermodynamic functions have also been calculated and interpreted.  相似文献   

20.
A novel strain of Bacillus licheniformis P-104 was isolated from Chinese soybean paste to produce a bioflocculant. The bioflocculant was confirmed as ultra-high molecular weight poly-γ-glutamic acid (γ-PGA) using Fourier transform infrared spectrum, high-performance liquid chromatography, and gel permeation chromatography with multi-angle laser light scattering. The production technology and flocculation properties of γ-PGA were investigated. By fed-batch fermentation in a 7-L bioreactor, the maximum γ-PGA yield reached 41.6 g L?1 with a productivity rate of 1.07 g L?1 h?1. The flocculating activity of γ-PGA for kaolin suspension was 33.5?±?1.6 1/OD under the optimized flocculation conditions (6 mM Ca2+, 1.5 mg L?1 γ-PGA, and pH 6.0). The optimized dosage of γ-PGA for flocculation was just about 30 % of that of reported γ-PGA produced by other strains. Moreover, the flocculation activity of γ-PGA produced by strain P-104 was much higher than commercial γ-PGA with the molecular weight ranging 200–500 kDa and 1,500–2,500 kDa. This study provided a promising strain and an efficient method for production of ultra-high molecular weight γ-PGA which could be used as a potential green bioflocculant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号