首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A soluble 3-ketovalidoxylamine A C-N lyase from Stenotrophomonas maltrophilia was purified to 367.5-fold from the crude enzyme, with a yield of 16.4% by column chromatography on High S IEX, Methyl HIC, High Q IEX, and Sephadex G 100. The molecular mass of the enzyme was estimated to be 34 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and the enzyme was a neutral protein having an isoelectric point value at pH?7.0. The optimal pH of 3-ketovalidoxylamine A C-N lyase was around 7.0. The enzyme was stable within a pH range of 7.0–10.5. The optimal temperature was found to be near 40?°C, and the enzyme was sensitive to heat. The enzyme was completely inhibited by ethylenediaminetetraacetic acid, and it was reversed by Ca2+. The product, p-nitroaniline, inhibited the enzyme activity significantly at low concentration. The enzyme has C-N lyase activity and C-O lyase activity, and need 3-keto groups. The apparent K m value for p-nitrophenyl-3-ketovalidamine was 0.14 mM.  相似文献   

2.
A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M?1 S?1). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS–PAGE. The enzyme was highly active over a pH range of 6.5–9.0 and temperature range of 20–80 °C, with maximum activity at pH 7.5 and at 50 °C. The Km and Kcat were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications.  相似文献   

3.
A bacterial strain isolated from soil and identified as Enterobacter cloacae had been found to be capable of producing both intra and extracellular β-d-galactosidase.The intracellular enzyme was thermostable and its optimum temperature, pH and time for enzyme—substrate reaction were found to be 50?°C, 9.0 and 5 min respectively, using ONPG as substrate. The maximum β-galactosidase production in shake flask was achieved at 30?°C, pH 7.0, incubation time 72 h using 50 ml medium in 250 ml Erlenmeyer flask. Only Mg2+ stimulated the activity of enzyme. Cetyl trimethyl ammonium bromide showed stimulatory effect on catalytic activity of the enzyme whereas EDTA inhibited enzyme activity. The enzyme retained its activity upto 55?°C after incubating at that temperature for 1 h.The maximum activity of crude intracellular enzyme was 14.35 IU/mg of protein. The K m and V max values of β-galactosidase using ONPG as substrate at 50?°C were 2.805 mM and 37.45?×?10?3?mM/min/mg, respectively.  相似文献   

4.
An indigenously isolated fungal strain identified as Aspergillus terricola with assigned fungal strain number MTCC 7588 has been used as source for pectin lyase production. The extracellular pectin lyase was purified to homogeneity from the culture filtrate of A. terricola by ion exchange and gel filtration chromatography. The determined molecular weight was 35 ± 01 kDa. The K m and k cat (turnover) values of the purified enzyme at 37 °C using citrus pectin as the substrate were found to be 1.0 mg/ml and 110.0 s−1, respectively. The pH and temperature optima of the enzyme were 8.0 and 50 °C, respectively. The retting ability of the purified pectin lyase for natural fibers viz. Cannabis sativa and Linum usitatissimum has been demonstrated for the first time.  相似文献   

5.
Acinetobacter strain PS12B was isolated from marine sediment and was found to be a good candidate to degrade agar and produce agarase enzyme. The extracellular agarase enzyme from strain PS12B was purified by ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography. The specific activity of the crude enzyme which was 1.52 U increased to 45.76 U, after two-stage purification, with an enzyme yield of 9.76%. Purified enzyme had a molecular mass of 24 kDa. The optimum pH and temperature for activity of purified agarase were found to be 8.0 and 40 °C, respectively. The Km and Vmax values for agarase were 4.69 mg/ml and 0.5 μmol/min, respectively. Treatment with EDTA reduced the agarase activity by 58% at 5 mM concentration. The enzyme activity was stimulated by the presence of Fe2+, Mn2+, and Ca2+ ions while reducing reagents (β-mercaptoethanol and dithiothreitol, DTT) enhanced its activity by 30–40%. The purified agarase exhibited tolerance to both detergents and organic solvents. Major hydrolysis products of agar were DP4 and also a mixture of longer oligosaccharides DP6 and DP7. The enzyme hydrolysed seaweed (Gracilaria verrucosa) exhibited strong antioxidant activity in vitro. Successful hydrolysis of seaweed indicates the potential use of the enzyme to produce seaweed hydrolysate having health benefits as well as the industrial application like the production of biofuels.  相似文献   

6.
Hatching enzyme (HE) is of importance to degrade egg membrane to let the larvae be free. HE was purified and characterized from starfish blastula. The specific activity and the purification ratio of the purified HE with 110.9 kDa of molecular weight were 449.62 U/mg and 7.42-fold, respectively. Its optimal pH and temperature for activity were pH?8.0 and 30 °C, respectively. This enzyme was relatively stable in the range of pH?4.0–6.0 and 30–40 °C. This enzyme was inhibited by ethylene diamine tetraacetic acid (EDTA) and ethylene glycol tetraacetic acid, and also done moderately by Leupeptin, tosyl-lysine chloromethyl ketone, tosyl-phenylalanine chloromethyl ketone, and phenyl-methanesulfonyl fluoride. Zn2+ ion activated HE activity strongly and recovered the EDTA-pretreated activity more than did Ca2+, Mg2+, and Cu2+. Based on the results above, the starfish HE was classified as a zinc metallo- and trypsin-like serine protease. The values of Km, Vmax, and Kcat of the starfish HE on dimethyl casein were 0.31 mg/ml, 0.17 U/ml, and 122.70 s?1, respectively, whereas 1.09 mg/ml, 0.12 U/ml, and 771.98 s?1 on type I collagen. Therefore, the starfish HE could be a potential cosmeceutical because of its strong cleavage specificity on type I collagen.  相似文献   

7.
A halotolerant Virgibacillus alimentarius LBU20907 isolated from fermented fish (Budu) was found to be an efficient producer of extracellular halophilic lipase enzyme. The enzyme was purified 5.99-fold with a 0.15% final yield to homogeneity by ammonium sulfate precipitation, followed by dialysis, Toyopearl DEAE-650 M ion exchange chromatography, Toyopearl butyl-650 M hydrophobic interaction chromatography, and Toyopearl-HW 55 F gel filtration chromatography. SDS-PAGE of purified lipase exhibited a homogenous single band with a very high molecular weight of 100 kDa. The properties of purified lipase revealed maximum activity at pH 7.0 and 40 °C. It was also highly stable in a pH range of 6.0–7.0, retaining more than 90% activity for 24 h. It was stable at the temperature of 30–50 °C and maintained more than 80% activity for 16 h. The purified lipase performing the maximal activity in the presence of 20.0% NaCl indicated halophilic enzyme properties. Its lipolytic activity was highest against p-nitrophenyl palmitate. The lipase activity was found to be enhanced in hexane. The enzyme activity was stimulated in the presence of Zn2+, Ca2+, Mg2+, and Sr2+; while, it was completely inhibited by Ba2+ and Co2+. The enzyme had a K m and V max of 108.0 mg and 79.1 U mL?1, respectively.  相似文献   

8.
Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni2+–NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0–12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K m and V max values of r-PL D for polygalacturonic acid were 4.9 g?l?1 and 30.1 μmol?min?1 mg?1, respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry.  相似文献   

9.
Saccharification of cellulose is a promising method for production of biofuels. However, low bioconversion efficiency of cellulose to soluble sugars is a major challenge. In this study, a cellulolytic strain of Fusarium oxysporum was cultivated on pure cellulosic substrates (avicel, α-cellulose, carboxymethylcellulose and methylcellulose) and conversion efficiency into glucose was investigated. Production of exo- and endoglucanases during the bioconversion process was evaluated. Influence of pH on saccharification of cellulose and enzyme production by F. oxysporum were determined. Highest yield of glucose (1.76 μmol/ml) was obtained from F. oxysporum on methyl cellulose at 192 h under basal conditions. Liberated glucose under optimized condition of pH 6.0 at 96 h of fermentation was 2.12 μmol/ml with maximum production of exo- and endoglucanases (23.70 and 34.72 U/mg protein, respectively). The crude exo- and endoglucanases had optimum activities at pH 8.0, 70 °C and pH 7.0, 50 °C, respectively. The enzymes were stable over pH of 4.0–7.0 with relative residual activity above 60% after 1 h incubation. Exoglucanase activity was enhanced by Ca2+ and Cu2+ at 5 mM and Mg2+ at 10 mM. Endoglucanase activity was greatly enhanced in the presence of Mn2+, Ca2+, Mg2+, Cu2+ and Fe3+ at 5 and 10 mM. Activities of both enzymes were inhibited in the presence of Hg2+ at 5 and 10 mM. Results show that F. oxysporum possessed good cellulolytic enzyme system for efficient conversion of cellulose. Exhibited thermotolerance of exoglucanase with the striking tolerance of endoglucanase to metal ions demonstrate potentials of enzymes for biofuel industry.  相似文献   

10.
An extracellular lipase from Fusarium solani strain (F. solani lipase (FSL)) was purified to homogeneity by ammonium sulphate precipitation, gel filtration and anion exchange chromatography. The purified enzyme has a molecular mass of 30 kDa as estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The 12 NH2-terminal amino acid residues showed a high degree of homology with a putative lipase from the fungus Necteria heamatoccocae. It is a serine enzyme, like all known lipases from different origins. Interestingly, FSL has not only lipase activity but also a high phospholipase activity which requires the presence of Ca2+ and bile salts. The specific activities of FSL were about 1,610 and 2,414 U/mg on olive oil emulsion and egg-yolk phosphatidylcholine as substrates, respectively, at pH 8.0 and 37 °C. The (phospho)lipase enzyme was stable in the pH range of 5–10 and at temperatures below 45 °C.  相似文献   

11.
A new organic solvent-tolerant strain Bacillus megaterium AU02 which secretes an organic solvent-tolerant protease was isolated from milk industry waste. Statistical methods were employed to achieve optimum protease production of 43.6 U/ml in shake flask cultures. The productivity of the protease was increased to 53 U/ml when cultivated under controlled conditions in a 7-L fermentor. The protease was purified to homogeneity by a three-step process with 24 % yield and specific activity of 5,375 U/mg. The molecular mass of the protease was found to be 59 kDa. The enzyme was active over a wide range of pH (6.0–9.0), with an optimum activity at pH 7.0 and temperature from 40 to 70 °C having an optimum activity at 50 °C. The thermal stability of the enzyme increased significantly in the presence of CaCl2, and it retained 90 % activity at 50 °C for 3 h. The K m and V max values were determined as 0.722 mg/ml and 0.018 U/mg respectively. The metalloprotease exhibited significant stability in the presence of organic solvents with log P values more than 2.5, nonionic detergents and oxidising agent. An attempt was made to test the synthesis of aspartame precursor (Cbz-Asp-Phe-NH2) which was catalysed by AU02 protease in the presence of 50 % DMSO. These properties of AU02 protease make it an ideal choice for enzymatic peptide synthesis in organic media.  相似文献   

12.
An extracellular xylanase from halophilic Streptomonospora sp. YIM 90494 was purified to homogeneity from a fermentation broth by ammonium sulphate precipitation, gel filtration chromatography and ion exchange chromatography. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of approximately 50 kDa. The xylanase had maximum activity at pH 7.5 and 55 °C. The enzyme was stable over a broad pH range (pH 4.0–10.0) and showed good thermal stability when being incubated at 60 °C for 2 h. Kinetic experiments indicated that the enzyme had K m and V max values of 19.24 mg/mL and 6.1 μmol/min/mg, respectively, using birch wood xylan as substrate. The inhibitory effects of various metal ions and chemical agents on the xylanase activity were investigated. It is greatly interesting to note that Ag+ ion and SDS, which strongly inhibited most xylanases reported previously increases the xylanase activity in this study. These characteristics suggest that the enzyme with new properties has considerable potential in industrial applications.  相似文献   

13.
The purification and characterization of intracellular tyrosine phenol lyase from Citrobacter freundii has been carried out. The enzyme was purified 35-fold to homogeneity by ammonium sulphate precipitation and hydrophobic interaction chromatography. Its subunit molecular weight was found to be 52 kDa on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified tyrosine phenol lyase showed maximum activity in borate buffer (0.05 M at pH 8.5) at 45 °C after 20 min of incubation. The K m and V max values of purified enzyme were found to be 0.446 mm and 0.342 mM/min/mg. This enzyme exhibits t 1/2 of 10, 52 and 130 min at 55, 45 and 35 °C, respectively. The N-terminal amino acid sequence was determined as MET-ASN-TYR-PRO-ALA-GLU-PRO-PHE-ARG-ILE-TRP-TRP-VAL-GLY.  相似文献   

14.
Penicillium nalgiovense PNA9 produces an extracellular protease during fermentation with characteristics of growth-associated product. Enzyme purification involved ammonium sulfate precipitation, dialysis, and ultrafiltration, resulting in 12.1-fold increase of specific activity (19.5 U/mg). The protein was isolated through a series of BN-PAGE and native PAGE runs. ESI-MS analysis confirmed the molecular mass of 45.2 kDa. N-Terminal sequencing (MGFLKLLKGSLATLAVVNAGKLLTANDGDE) revealed 93 % similarity to a Penicillium chrysogenum protease, identified as major allergen. The protease exhibits simple Michaelis-Menten kinetics and K m (1.152 mg/ml), V max (0.827 mg/ml/min), and k cat (3.2?×?102) (1/s) values against azocasein show that it possesses high substrate affinity and catalytic efficiency. The protease is active within 10–45 °C, pH 4.0–10.0, and 0–3 M NaCl, while maximum activity was observed at 35 °C, pH 8.0, and 0.25 M NaCl. It is active against the muscle proteins actin and myosin and inactive against myoglobin. It is highly stable in the presence of non-ionic surfactants, hydrogen peroxide, BTNB, and EDTA. Activity was inhibited by SDS, Mn2+ and Zn2+, and by the serine protease inhibitor PMSF, indicating the serine protease nature of the enzyme. These properties make the novel protease a suitable candidate enzyme in meat ripening and other biotechnological applications.  相似文献   

15.
A gene encoding glycoside hydrolase family 11 xylanase (HoXyn11B) from Hypocrea orientalis EU7–22 was expressed in Pichia pastoris with a high activity (413 IU/ml). HoXyn11B was partly N-glycosylated and appeared two protein bands (19–29 kDa) on SDS-PAGE. The recombinant enzyme exhibited optimal activity at pH 4.5 and 55 °C, and retained more than 90% of the original activity after incubation at 50 °C for 60 min. The determined apparent K m and V max values using beechwood xylan were 10.43 mg/ml and 3246.75 IU/mg, respectively. The modes of action of recombinant HoXyn11B on xylo-oligosaccharides (XOSs) and beechwood xylan were investigated by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which indicated that the modes of action of HoXyn11B are different from HoXyn11A since it is able to release a significant amount of xylose from various substrates. This study provides an opportunity to better understand the hydrolysis mechanisms of xylan by xylanases from Trichoderma.  相似文献   

16.
l-Glutaminase (E.C.3.5.2.1) extracellularly produced by Bacillus cereus MTCC 1305 was purified to apparent homogeneity with a fine band. The molecular weight of native enzyme and its subunit were found to be approximately 140 and 35 kDa, respectively, which indicates its homotetrameric nature. The substrate specificity test of this enzyme showed its specificity for l-glutamine. The purified enzyme showed maximum activity at optimum pH 7.5 and temperature 35 °C. The enzyme retained stability up to 50 and 20 % even after treatment at 50 and 55 °C, respectively, for 30 min. Monovalent cations (Na+, K+) and phosphate ion activated the enzyme activity, while divalent cations (Mg2+, Mn2+, Zn2+, Pb2+, Ca2+, Co2+, Hg2+, Cd2+, Cu2+) inhibited its activity. Reducing agents (cysteine, glutathione, dithiothreitol, l-ascorbic acid, and β-mercaptoethanol) stimulated its activity, whereas thiol-binding agents (iodoacetamide, p-chloromercuribenzoic acid) resulted in the inhibition of this enzyme. Kinetic parameters, K m, V max, K cat, of purified enzyme were found to be 6.25 mM, 100 μmol/min/mg protein and 2.22?×?102 M?1s?1, respectively. The gradual inhibition in growth of hepatocellular carcinoma (Hep-G2) cell lines was found with IC50 value of 82.27 μg/ml in the presence of different doses of l-glutaminase (10–100 μg/ml).  相似文献   

17.
1,3-Propanediol dehydrogenase (PDOR) is important in the biosynthesis of 1,3-propanediol. In the present study, the dhaT gene encoding PDOR was cloned from Lactobacillus brevis 6239 and expressed in Escherichia coli for the first time. Sequence analysis revealed that PDOR containing two Fe2+-binding motifs and a cofactor motif belongs to the type III alcohol dehydrogenase. The purified recombinant PDOR exhibited a single band of 42 kDa according to SDS-PAGE. Optimal temperatures and pH values of this dehydrogenase are 37 °C, 7.5 for reduction and 25 °C, 9.5 for oxidation, respectively. We found that PDOR was more stable in acid buffer than in alkaline condition, and 60 % of its relative activity still remained after a 2-h incubation at 37 °C. The activity of PDOR can be enhanced in the presence of Mn2+ or Fe2+ iron and inhibited by EDTA or PMSF by different degrees. The K m and V max of this dehydrogenase are 1.25 mM, 64.02 μM min?1 mg?1 for propionaldehyde and 2.26 mM, 35.05 μM min?1 mg?1 for 1,3-PD, respectively. Substrate specificity analysis showed that PDOR has a broad range of substrate specificities. The modeling superposition indicated that the structural differences may account for the diversity of PDORs’ properties. Thus, our PDOR is a potential candidate for facilitating the 1,3-PD biosynthesis.  相似文献   

18.
A novel hybrid epoxy/nano CaCO3 composite matrix for catalase immobilization was prepared by polymerizing epoxy resin in the presence of CaCO3 nanoparticles. The hybrid support was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Catalase was successfully immobilized onto epoxy/nano CaCO3 support with a conjugation yield of 0.67?±?0.01 mg/cm2 and 92.63?±?0.80 % retention of activity. Optimum pH and optimum temperature of free and immobilized catalases were found to be 7.0 and 35 °C. The value of K m for H2O2 was higher for immobilized enzyme (31.42 mM) than native enzyme (27.73 mM). A decrease in V max value from 1,500 to 421.10 μmol (min mg protein)?1 was observed after immobilization. Thermal and storage stabilities of catalase improved immensely after immobilization. Immobilized enzyme retained three times than the activity of free enzyme when kept at 75 °C for 1 h and the half-life of enzyme increased five times when stored in phosphate buffer (0.01 M, pH 7.0) at 5 °C. The enzyme could be reused 30 times without any significant loss of its initial activity. Desorption of catalase from the hybrid support was minimum at pH 7.0.  相似文献   

19.
Jonesia denitrificans BN-13 produces six xylanases: Xyl1, Xyl2, Xyl3, Xyl4, Xyl5, and Xyl6; the Xyl4 was purified and characterized after two consecutive purification steps using ultrafiltration and anion exchange chromatography. The xylanase-specific activity was found to be 77 unit (U)/mg. The molecular weight of the Xyl4 estimated using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) revealed a monomeric isoenzyme of about 42 kDa. It showed an optimum pH value of 7.0 and a temperature of 50 °C. It was stable at 50 °C for 9.34 h. The enzyme showed to be activated by Mn+2, β-mercaptoethanol, and dithiothreitol (DTT) with a high affinity towards birchwood xylan (with a K m of 1 mg ml?1) and hydrolysis of oat-spelt xylan with a K m of 1.85 mg ml?1. The ability of binding to cellulose and/or xylan was also investigated.  相似文献   

20.
The enzyme 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGR) is a glycoprotein of the endoplasmic reticulum that participates in the mevalonate pathway, the precursor of cholesterol in human and ergosterol in fungi. This enzyme has three domains: transmembrane, binding, and soluble. In this study, we expressed and purified the soluble fraction of the HMGR enzyme from Candida glabrata (CgHMGR) in an Escherichia coli heterologous system and used it as a model for studying its inhibitory activity. The soluble fraction of CgHMGR was fused to the maltose binding protein (MBP), purified, and characterized. Optimal pH was 8.0, and its optimal temperature activity was 37 °C. The k m and V max for the HMG-CoA were 6.5 μM and 2.26 × 10?3 μM min?1, respectively. Recombinant CgHMGR was inhibited by simvastatin presenting an IC50 at 14.5 μM. In conclusion, our findings suggest that the recombinant HMGR version from C. glabrata may be used as a study model system for HMGR inhibitors such as statins and newly synthesized inhibitor compounds that might be used in the treatment of hypercholesterolemia or mycosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号