首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured and analyzed the low-temperature (T=10 K) absorption spectrum of reduced horse heart and yeast cytochrome c. Both spectra show split and asymmetric Q(0) and Q(upsilon) bands. The spectra were first decomposed into the individual split vibronic sidebands assignable to B(1g) (nu15) and A(2g) (nu19, nu21, and nu22) Herzberg-Teller active modes due to their strong intensity in resonance Raman spectra acquired with Q(0) and Q(upsilon) excitations. The measured band splittings and asymmetries cannot be rationalized solely in terms of electronic perturbations of the heme macrocycle. On the contrary, they clearly point to the importance of considering not only electronic perturbations but vibronic perturbations as well. The former are most likely due to the heterogeneity of the electric field produced by charged side chains in the protein environment, whereas the latter reflect a perturbation potential due to multiple heme-protein interactions, which deform the heme structure in the ground and excited states. Additional information about vibronic perturbations and the associated ground-state deformations are inferred from the depolarization ratios of resonance Raman bands. The results of our analysis indicate that the heme group in yeast cytochrome c is more nonplanar and more distorted along a B(2g) coordinate than in horse heart cytochrome c. This conclusion is supported by normal structural decomposition calculations performed on the heme extracted from molecular-dynamic simulations of the two investigated proteins. Interestingly, the latter are somewhat different from the respective deformations obtained from the x-ray structures.  相似文献   

2.
The function of heme proteins is, to a significant extent, influenced by the ligand field probed by the heme iron, which itself can be affected by deformations of the heme macrocycle. The exploration of this field is difficult because the heme structure obtained from X-ray crystallography is not resolved enough to unambiguously identify structural changes on the scale of 10(-2) A. However, asymmetric deformations in this order of magnitude affect the depolarization ratio of the resonance Raman lines assignable to normal vibrations of the heme group. We have measured the dispersion of the depolarization ratios of four structure sensitive Raman bands (i.e., nu4, nu11, nu21, and nu28) in yeast iso-1-ferrocytochrome c and its mutants N52V, Y67F, and N52VY67F with B- and Q-band excitation. The DPR dispersion of all bands indicates the presence of asymmetric in-plane and out-of-plane deformations. The replacement of the polar tyrosine residue at position 67 by phenylalanine significantly increases the triclinic B2g deformation, which involves a distortion of the pyrrole symmetry. We relate this deformation to changes of the electronic structure of pyrrole A, which modulates the interaction between its propionate substituents and the protein environment. This specific heme deformation is eliminated in the double mutant N52VY67F. The additional substitution of N52 by valine induces a tetragonal B1g deformation which involves asymmetric changes of the Fe-N distances and increases the rhombicity of the ligand field probed by the heme iron. This heme deformation might be caused by the elimination of the water-protein hydrogen-bonding network in the heme cavity. The single mutation N52V does not significantly perturb the heme symmetry, but a small B1g deformation is consistent with our data and the heme structure obtained from a 1 ns molecular dynamics simulation of the protein.  相似文献   

3.
Electronic circular dichroism (ECD) is a valuable tool to explore the secondary and tertiary structure of proteins. With respect to heme proteins, the corresponding visible ECD spectra, which probe the chirality of the heme environment, have been used to explore functionally relevant structural changes in the heme vicinity. While the physical basis of the obtained ECD signal has been analyzed by Woody and co-workers in terms of multiple electronic coupling mechanism between the electronic transitions of the heme chromophore and of the protein (Hsu, M.C.; Woody, R.W. J. Am. Chem. Soc. 1971, 93, 3515), a theory for a detailed quantitative analysis of ECD profiles has only recently been developed (Schweitzer-Stenner, R.; Gorden, J. P.; Hagarman, A. J. Chem. Phys. 2007, 127, 135103). In the present study this theory is applied to analyze the visible ECD-spectra of both oxidation states of three cytochromes c from horse, cow and yeast. The results reveal that both B- and Q-bands are subject to band splitting, which is caused by a combination of electronic and vibronic perturbations. The B-band splittings are substantially larger than the corresponding Q-band splittings in both oxidation states. For the B-bands, the electronic contribution to the band splitting can be assigned to the internal electric field in the heme pocket, whereas the corresponding Q-band splitting is likely to reflect its gradient (Manas, E. S.; Vanderkooi, J. M.; Sharp, K. A. J. Phys. Chem. B 1999, 103, 6344). We found that the electronic and vibronic splitting is substantially larger in the oxidized than in the reduced state. Moreover, these states exhibit different signs of electronic splitting. These findings suggest that the oxidation process increases the internal electric field and changes its orientation with respect to the molecular coordinate system associated with the N-Fe-N lines of the heme group. For the reduced state, we used our data to calculate electric field strengths between 27 and 31 MV/cm for the investigated cytochrome c species. The field of the oxidized state is more difficult to estimate, owing to the lack of information about its orientation in the heme plane. Based on band splitting and the wavenumber of the band position we estimated a field-strength of ca. 40 MV/cm for oxidized horse heart cytochrome c. The thus derived difference between the field strengths of the oxidized and reduced state would contribute at least -55 kJ/mol to the enthalpic stabilization of the oxidized state. Our data indicate that the corresponding stabilization energy of yeast cytochrome c is smaller.  相似文献   

4.
A model is presented that allows the investigation of depolarization dispersion curves of a1g,a2g,b1g and b2g resonance Raman fundamentals in the region of the Q state of metalloporphyrins and metallophthalocyanines. This dispersion results from electronic and/or vibronic perturbations of A2g,B1g and B2g symmetry due to asymmetric substituents and/or metal ion-ring interaction acting on the porphyrin (phthalocyanine) ring. The electronic perturbations affect the electronic configuration interaction pattern between the four orbital components of the Q and B states, yielding thereby similar depolarization dispersion curves for all modes of a given symmetry, whereas the vibronic perturbations affect selectively the vibronic coupling matrix of a particular mode. Depolarization dispersion curves resulting from A2g and B1g perturbations are treated separately, and many helpful perturbational formulas are given for use in analyzing experimental data. Examples of depolarization dispersion curves and excitation profiles of fundamentals of a1g, a2g, b1g and b2g symmetry are presented. It is shown that strong depolarization dispersion observed in copper chelate of mesoporphyrin IX dimethyl ester for a1g and a2g fundamentals can be explained in terms of an A2g electronic perturbation and a vibronic a2g perturbation suffered by the a1g(1131 cm?1) fundamental. Similarly, the depolarization dispersion curves observed for fundamentals in cytochrome c and Pt-phthalocyanine are explained in terms of an electronic B1g perturbation, together with selective b1g vibronic perturbations acting on the 1310 cm?1 a2g fundamental in cytochrome c and the 482 cm?1 b2g fundamental in Pt-phthalocyanine. The agreement between the depolarization dispersion curves predicted by our model and experimental data is shown to be satisfactory.  相似文献   

5.
采用共振拉曼光谱技术研究了细胞色素c一次突变体(WT)及其突变体Y67F和N52I在低频区的光谱特征。结果表明,以苯丙氨酸替代WT中酪氨酸残基Tyr67并没有明显影响血红素丙氨酸侧基周围多肽氨基酸残基的构象,而异亮氨酸对天冬酰胺残基Asn52的取代则较大程度地改变了蛋白质内部水分子与周围氨基酸残基间的氢键作用和多肽空腔的疏水性,进而使氨基酸残基和血素的构象相应发生调变。两种取代都导致形成血红素周围空腔的多肽氨基酸残基构象的变化。  相似文献   

6.
We report the results of a model study of the influence of vibronic coupling involving non-totally symmetric vibrations and static crystal field interactions on the spectral properties of molecules with close-lying excited electronic states. The presented results suggests that “proximity effects” brought about by solvent perturbation arise from two sources: (i) alterations in the energy separation between vibronically coupled electronic states and (ii) crystal field mixing of the isolated molecular electronic states. It is shown that crystal field mixing leads to the breakdown of the vibronic coupling scheme for non-totally symmetric vibrations in isolated molecules. This breakdown is shown to have a very pronounced effect on the spectral properties of molecules with close-lying excited electronic states. The effect of environmental perturbations on excited state frequencies, the breakdown of symmetry and polarization selection rules, and vibrational intensity distributions is discussed.  相似文献   

7.
Cytochrome c6A is a unique dithio-cytochrome of green algae and plants. It has a very similar core structure to that of bacterial and algal cytochromes c6 but is unable to fulfill the same function of transferring electrons from cytochrome f to photosystem I. A key feature is that its heme midpoint potential is more than 200 mV below that of cytochrome c6 despite having His and Met as axial heme-iron ligands. To identify the molecular origins of the difference in potential, the structure of cytochrome c6 from the cyanobacterium Phormidium laminosum has been determined by X-ray crystallography and compared with the known structure of cytochrome c6A. One salient difference of the heme pockets is that a highly conserved Gln (Q51) in cytochrome c6 is replaced by Val (V52) in c6A. Using protein film voltammetry, we found that swapping these residues raised the c6A potential by +109 mV and decreased that of c6 by almost the same extent, -100 mV. X-ray crystallography of the V52Q protein showed that the Gln residue adopts the same configuration relative to the heme as in cytochrome c6 and we propose that this stereochemistry destabilizes the oxidized form of the heme. Consequently, replacement of Gln by Val was probably a key step in the evolution of cytochrome c6A from cytochrome c6, inhibiting reduction by the cytochrome b6f complex and facilitating establishment of a new function.  相似文献   

8.
We measured the Soret band of deoxymyoglobin (deoxyMb), myoglobin cyanide (MbCN), and aquo-metmyoglobin (all from horse heart) with absorption and circular dichroism (CD) spectroscopies. A clear non-coincidence was observed between the absorption and CD profiles of deoxyMb and MbCN, with the CD profiles red- and blueshifted with respect to the absorption band position, respectively. On the contrary, the CD and absorption profiles of aquametMb were nearly identical. The observed noncoincidence indicates a splitting of the excited B state due to heme-protein interactions. CD and absorption profiles of deoxyMb and MbCN were self-consistently analyzed by employing a perturbation approach for weak vibronic coupling as well as the relative intensities and depolarization ratios of seven bands in the respective resonance Raman spectra measured with B-band excitation. The respective B(y) component was found to dominate the observed Cotton effect of both myoglobin derivatives. The different signs of the noncoincidences between CD and absorption bands observed for deoxyMb and MbCN are due to different signs of the respective matrix elements of A(1g) electronic interstate coupling, which reflects an imbalance of Gouterman's 50:50 states. The splitting of the B band reflects contributions from electronic and vibronic perturbations of B(1g) symmetry. The results of our analysis suggest that the broad and asymmetric absorption band of deoxyMb results from this band splitting rather than from its dependence on heme doming. Thus, we are able to explain recent findings that the temperature dependences of CO rebinding to myoglobin and the Soret band profile are uncorrelated[Ormos et al., Proc. Natl. Acad. Sci U.S.A. 95, 6762 (1998)].  相似文献   

9.
Luminescence and excitation of luminescence vibronic spectra of europium nitrates Eu(NO3)3 x 4SOR2 containing sulphoxide derivatives were obtained and analysed. Some factors influencing the intensity distribution in vibronic sidebands are discussed. Significant variation of the intensity distribution in antiStokes sidebands of Eu3+ electronic transitions in series of nitrates results from the difference in effective charges on coordinated oxygen atoms of ligands. Another important detail of the vibronic spectra is a redistribution of intensity in the region of 5D0, 5D1-->7F2 transitions of luminescence spectra originated in overlap of different vibronic transitions. Mixing between the 7F2 electronic state of Eu3+ and vibronic satellites of 7F0 electronic state was studied both under conditions of resonance and in case of significant detuning.  相似文献   

10.
Multi-mode vibronic coupling in the , , and electronic states of Cyanogen radical cation (C N ) is investigated with the aid of ab initio quantum chemistry and first principles quantum dynamics methods. The electronic degenerate states of Π symmetry of C N undergo Renner-Teller (RT) splitting along degenerate vibrational modes of π symmetry. The RT split components form symmetry allowed conical intersections with those from nearby RT split states or with non-degenerate electronic states of Σ symmetry. A parameterized vibronic Hamiltonian is constructed using standard vibronic coupling theory in a diabatic electronic basis and symmetry rules. The parameters of the Hamiltonian are derived from ab initio calculated adiabatic electronic energies. The vibronic spectrum is calculated, assigned and compared with the available experimental data. The impact of various electronic coupling on the vibronic structure of the spectrum is discussed.  相似文献   

11.
The compound [Ni(PPh(3))(3)][BF(4)] x BF(3) x OEt(2) was isolated in crystalline form from the olefin oligomerization catalyst system Ni(PPh(3))(4)/BF(3) x OEt(2) and structurally characterized by X-ray diffraction. The influence of vibronic coupling on the EPR parameters of three-coordinate metal complexes with a 3d(9) electronic configuration was investigated within the framework of ligand field theory. Analytical expressions for g-tensor components and isotropic hyperfine coupling constants with ligand nuclei were obtained using first-order perturbation theory. It has been shown that the account of the vibronic interaction in the excited state predicts the existence of three-axial anisotropy of the g-tensor even at the level of first-order perturbation theory; two axes of the g-tensor located in a plane of three-coordinate structure can rotate about the main z axis when a compound is distorted by motion of ligands. It has been shown that in three points of the potential energy surface minimum, for which linear and quadric constants of the vibronic interactions have an identical signs, the HFS isotropic constant from one ligand is larger than HFS constants from the other two; for different vibronic constant signs the ratio between HFS constants varies on opposite. This theoretical researches are in the quality consent with experimental data for a three-coordinate Ni(I) and Cu(II) flat complexes.  相似文献   

12.
A symmetry adapted formalism to evaluate the vibronic intensities induced by the ungerade vibrational modes in centrosymmetric coordination compounds of the rare earths is put forward and applied to several selected electronic transitions of the PrCl3−6 and UCl2−6 complex ions in octahedral symmetry. This current model is based upon a modified symmetry adapted version of the combined vibronic crystal field-closure-ligand polarisation approach. This model differs from that developed in Part I of this series, in that for the vibronic crystal field contribution to the total transition dipole moment, the closure procedure is employed rather than the utilisation of a truncated basis set for the central metal intermediate electronic states. A criterion is introduced to choose an appropriate set of phases for both the electronic and the vibrational coordinates so that to ensure the right sign for the interference term (which couples together both the vibronic crystal field and the vibronic ligand polarisation contributions to the total transition dipole moment). We have focused our attention on the modulation of the intermolecular force field and a version of a modified general valence force field has been adopted. The reasons for using this formalism rather than the superposition model (SM) are fully discussed in the text. Finally, it is shown that the agreement with experiment is satisfactory for most of the components of the transitions studied, despite the apparent simplicity of our model calculation. General master equations applicable to any fN electronic configurations are derived to show the utility and flexibility of this current formalism.  相似文献   

13.
The full electronic absorption spectrum of pyridine N-oxide vapor in the near ultraviolet region has been obtained. The vibronic structure has been analyzed in detail. The four absorption bands, which are observed at 341, 290, 228, and 217 nm, correspond to four 0–0 vibronic transitions. The spectrum is interpreted in terms of the CNDO/S method. The symmetry of the vibrations that exhibit activity due to the Herzberg-Teller effect in different electronic states has been studied. N. G. Chernyshevskii Saratov State University. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 2, pp. 345–349, March–April, 1995. Translated by I. Izvekova  相似文献   

14.
We utilize the experience gained in our previous studies on the "chemistry of vibronic coupling" in simple homonuclear and heteronuclear molecules to begin assembling theoretical guidelines for the construction of potentially superconducting solids exhibiting large electron-phonon coupling. For this purpose we analyze similarities between vibronic coupling in isolated molecules and in extended solids. In particular, we study vibronic coupling along the antisymmetric stretch coordinate (Q(as)) in linear symmetric AAA molecules, and along the optical phonon "pairing" mode coordinate (Q(opt)) in corresponding one-dimensional [A]( infinity ) chains built of equidistant A atoms. This is done for a broad range of chemical elements (A). The following similarities between vibronic coupling in molecules and phonon coupling in solids emerge from our calculations: 1) The HOMO/LUMO electronic energy gap in an AAA molecule increases along Q(as), and the highest occupied crystal orbital/lowest unoccupied crystal orbital gap in [A]( infinity ) chain increases along Q(opt). 2) The maximum vibronic instability is invariably obtained for a half-filled, singly occupied molecular orbital in AAA molecules, and for a corresponding half-filled band in [A]( infinity ) chains. 3) The vibronic stability of an AAA molecule increases with a decrease of the AA bond length, as does the vibronic stability of [A]( infinity ) chains (external pressure may lead to a reversal of a Peierls distortion). 4) The high degree of s-p mixing and ionic/covalent forbidden curve crossing dramatically enhance the vibronic instability of both AAA molecules and [A]( infinity ) chains. We also introduce one quantitative relationship: The parameter log(R) (where R is molar refractivity, a parameter used by Herzfeld to prescribe the conditions for the metallization of the elements) correlates with a parameter f(AA) (defined as twice the electronegativity of A, divided by the equilibrium AA bond length), used by two of us previously to describe vibronic coupling in AAA molecules for a broad range of elements (A=halogen, H, or an alkali metal). We hope to illustrate that key chemical aspects of vibronic coupling in simple molecules may thus be profitably transferred to corresponding materials in the solid state.  相似文献   

15.
The influence of vibronic interactions on the chiroptical spectra associated with a threesome of nearly degenerate electronic excited states in a dissymmetric molecular system is examined on a formal theoretical model. The model considers two vibrational modes to be effective in promoting pseudo Jahn-Teller (PJT) type interactions between the three closely spaced electronic excited states. Formal expressions are developed for the rotatory strengths of individual vibronic levels derived from the coupled electronic states. Two mode (vibrational)-three state (electronic) vibronic Hamiltonians are constructed (basis set size, 63–108, depending upon interaction parameters used) and diagonalized for a large number of different parameter sets representative of various vibronic coupling strengths, electronic energy level spacings, oscillator (vibrational mode) frequencies, and electronic rotatory strengths. Diagonalization of these vibronic Hamiltonians yields vibronic wave functions and energies which are then used to calculate rotatory strength spectra for the model system. The calculated results demonstrate the profound influence which vibronic interactions of the PJT type may have on the sign patterns and intensity distributions within the rotatory strength spectrum associated with a set of nearly degenerate electronic states. The implication of these results for the interpretation of circular dichroism spectra of chiral transition metal complexes with pseudo tetragonal symmetry are discussed.  相似文献   

16.
Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.  相似文献   

17.
The complex vibronic spectra and the nonradiative decay dynamics of the cyclopropane radical cation (CP+) are simulated theoretically with the aid of a time-dependent wave packet propagation approach using the multireference time-dependent Hartree scheme. The theoretical results are compared with the experimental photoelectron spectrum of cyclopropane. The ground and first excited electronic states of CP+ are of X2E' and A2E' type, respectively. Each of these degenerate electronic states undergoes Jahn-Teller (JT) splitting when the radical cation is distorted along the degenerate vibrational modes of e' symmetry. The JT split components of these two electronic states can also undergo pseudo-Jahn-Teller (PJT)-type crossings via the vibrational modes of e', a1' and a2' symmetries. These lead to the possibility of multiple multidimensional conical intersections and highly nonadiabatic nuclear motions in these coupled manifolds of electronic states. In a previous publication [J. Phys. Chem. A 2004, 108, 2256], we investigated the JT interactions alone in the X2E' ground electronic manifold of CP+. In the present work, the JT interactions in the A2E' electronic manifold are treated, and our previous work is extended by considering the coupling between the X2E' and A2E' electronic states of CP+. The nuclear dynamics in this coupled manifold of two JT split doubly degenerate electronic states is simulated by considering fourteen active and most relevant vibrational degrees of freedom. The vibronic level spectra and the ultrafast nonradiative decay of the excited cationic states are examined and are related to the highly complex entanglement of electronic and nuclear degrees of freedom in this prototypical molecular system.  相似文献   

18.
The excited D (1)Sigma(+) electronic state of (7)LiH has been observed up to near its dissociation limit by a pulsed optical-optical double resonance fluorescence depletion spectroscopic technique. An extensive vibronic calculation has been performed with a diabatic approach with purely potential couplings involving a set of eight diabatic states of (1)Sigma(+) symmetry, corresponding to seven neutral states and one ionic state. Twenty-six new vibrational levels have been observed. Both the derived vibrational energy spacings and the vibronic ones are similarly irregular. The observed spectral linewidths and vibronic resonance widths are found to vary similarly with increasing energy. Observed asymmetric spectral lineshapes may be attributed to the strong radial couplings between the discrete levels of the D (1)Sigma(+) electronic state and the continuum states of the C (1)Sigma(+) electronic state. The mutual agreement between the spectral results and the vibronic results demonstrates that the D (1)Sigma(+) electronic state of (7)LiH is better characterized by the vibronic approach.  相似文献   

19.
A complete resonance Raman excitation profile of the heme charge-transfer band known as band III is presented. The data obtained throughout the near-infrared region show preresonance with the Q-band, but the data also clearly show the enhancement of a number of modes in the spectral region of band III. Only nontotally symmetric modes are observed to have resonance enhancement in the band III region. The observed resonance enhancements in modes of B(1g) symmetry are compared with the enhancements of those same modes in the excitation profiles of the Q-band of deoxy myoglobin, also presented here for this first time. The Q-band data agree well with the theory of vibronic coupling in metalloporphyrins (Shelnutt, J. A. J. Chem. Phys. 1981, 74, 6644-6657). The strong vibronic coupling of the Q-band of the deoxy form of hemes is discussed in terms of the enhancement of modes with both B(1g) and A(2g) symmetry. The comparison between the Q-band and band III reveals that, consistent with the theory, only modes of B(1g) symmetry are enhanced in the vicinity of band III. These results show that band III is vibronically coupled to the Soret band. The coupling of band III to modes with strong rhombic distortion of the heme macrocycle calls into question the hypothesis that the axial iron out-of-plane displacement is primarily responsible for the structure-dynamics correlations observed in myoglobin.  相似文献   

20.
Resonance Raman spectra of free-base octaethylporphine (OEP) were obtained with 368.9 nm, 397.9 nm and 416.0 nm excitation wavelengths, and density functional calculations were done to help the elucidation of Soret (B(x) and B(y)-band) electronic transitions and the corresponding photo relaxation dynamics of OEP. The RRs indicate that the Franck-Condon region photo relaxation dynamics upon S(0)→S(8) electronic transition is predominantly along the totally symmetric C(m)C(α) stretch, the C(β)C(β) stretch, and simultaneously along the asymmetric δ(pyr deformation),γ(CH(2)) vibrational relaxation processes. The excited state structural dynamics of OEP determined from resonance Raman spectra show that the internal conversion between B(y) and B(x) electronic states occurs in tens of femtoseconds and the electronic relaxation dynamics were firstly interpreted with account of the time-dependent wave packet theory and Herzberg-Teller (vibronic coupling) contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号