首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of results with an uncertainty through the "bottom-up" approach, involving the estimation and combination of all the sources of uncertainty, represents a challenge when the analytical method includes mass transfer steps (MTS). These steps (e.g. extraction, evaporation, digestion, etc.) with inherently different from 100% recoveries lack models capable of describing their precision and efficiency. Recently, a new methodology was published aimed at the estimation of the performance of these critical steps. Comparison of the experimental dispersion from the replicated analysis of spiked samples with the combination of the uncertainty associated with gravimetric, volumetric and instrumental quantification steps (described by well established models) allows the estimation of the MTS uncertainty. Evaluation of the behaviour of the MTS within the analytical range supports the use of developed estimations over a wide concentration range. This methodology was applied, with success, to the determination of pesticide residues in melon in one particular proficiency test organised by the Food Analysis Performance Assessment Scheme (FAPAS) between November 2000 and February 2001.  相似文献   

2.
Three multivariate calibration methods, partial least squares (PLS-1 and PLS-2) and principal component regression (PCR), were applied for the first time to the simultaneous determination of a mixture of six pesticides in vegetables samples by gas chromatography with mass spectrometric detection (GC-MS). PLS-1 method showed better prediction ability than PLS-2 and PCR methods. The GC-MS chromatograms obtained of vegetable samples spiked with the target pesticides were used to build the calibration matrix. The PLS-1 models were evaluated by predicting the concentrations of independent test samples. Also, the proposed models were successfully applied for the determination of these pesticides in vegetable samples after an extraction step with dichloromethane. By using the first derivative signals in PLS-1 models, simultaneous determination of the compounds was not improved.  相似文献   

3.
Properties and determination of pesticides in fruits and vegetables   总被引:3,自引:0,他引:3  
The intensive development of agriculture means that more and more toxic organic and inorganic compounds are entering the environment. Because of their widespread use, stability, selective toxicity and bioaccumulation, pesticides are among the most toxic substances contaminating the environment. They are particularly dangerous in fruit and vegetables, by which people are exposed to them. It is therefore crucial to monitor pesticide residues in fruit and vegetables using all available analytical methods.We set out the problems in the determination of organonitrogen and organophosphorus pesticides in samples of fruit and vegetables, including the complexity and the diversity of matrices in biological materials, and the very low level of pesticides present, as a result of which target analytes have to be isolated and then enriched prior to final determination.We discuss the various stages in the determination of pesticide residues in fruit and vegetables. We present results from the literature in the context of Maximum Residue Levels (MRLs) of target pesticides in fruit and vegetable samples. We discuss the merits of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) technique and two-dimensional gas chromatography.  相似文献   

4.
Pesticide residues in fruit and vegetables were determined by gas chromatography/tandem mass spectrometry (GC/MS/MS). Electron impact (EI)/MS/MS and chemical ionization (CI)/MS/MS were developed for 80 compounds, including organochlorine, organophosphorus, organonitrogen, and pyrethroids, providing unambiguous spectral confirmation for these complex matrixes. Residues were extracted from samples with acetone followed by a mixture of dichloromethane-petroleum ether. Two injections per sample were required for analysis of the entire pesticide list by EI/MS/MS and CI/MS/MS. Initial steps involving cleanup and concentration of extracts were eliminated. The excellent selectivity and good linearity allowed quantification and identification of low levels of pesticides in the most difficult matrixes. The method has been used for routine analysis of many vegetables.  相似文献   

5.
蔬菜、水果中12种限量有机磷农药残留量测定方法   总被引:2,自引:0,他引:2  
建立了蔬菜、水果中12种限量有机磷农药的提取、净化及毛细管柱气相色谱测定法。目标农药经乙腈萃取,弗罗里硅土柱净化,浓缩后用带火焰光度检测器(FPD)的双塔双柱气相色谱测定,前柱(DB-17)定量,后柱(DB-1)定性。12种农药线性良好,线性相关系数大于0.9990,对蔬菜、水果添加0.01~0.1mg/kg的水平,12种有机磷的平均回收率在70.9%~119.9%之间,相对标准偏差0.12%~12%,本方法的最低检测限0.005~0.05mg/kg。  相似文献   

6.
A method based on isotope dilution gas chromatography/mass spectrometry (GC/MS) with automated solid-phase extraction (SPE) is described for the analysis of 32 pesticides and metabolites in surface waters. This approach consist in the use of nine isotopically labelled representative pesticides as internal standards, which allows high accuracy (trueness and precision) and sensitivity for most analysed compounds, as it is required for isotope dilution-based methods. Uncertainties associated with pesticide determination in real samples were estimated using quality assurance/quality control (QA/QC) data. For most pesticides expanded uncertainty was below 40%, according to the commonly established requirements for analytical results. Ninety three Spanish surface waters collected in June-July and September-November 2004 were analysed. Concentration and occurrence of pesticides were evaluated. These parameters were higher in the summer than in the autumn period. In summer four pesticides were found in more than 50% of the analysed samples and four compounds were detected above the concentration level of 1 microg/l (atrazine, terbutylazine, 3,4-dichloroaniline and fenitrothion), while in autumn percentage of detection was below 50% for all pesticides and only one compound (terbutylazine) exceeded 1 microg/l.  相似文献   

7.
This paper describes a method for the sensitive and selective determination of 24 new pesticide residues (azoxystrobin, trifloxystrobin, kresoxim-methyl, fenazaquin, indoxacarb, fenothiocarb, furathiocarb, benfuracarb, imidachloprid, dimethomorph, fenpyroximate, hexythiazox, tebufenpyrad, tebufenozide, difeconazole, fenbuconazole, flusilazole, paclobutrazol, tebuconazole, tetraconazole, bromuconazole, etofenprox, fenhexamid, pyridaben) in apple puree, concentrated lemon juice and tomato puree. A miniaturized extraction-partition procedure requiring small amounts of non-chlorinated solvents was used. The extracts are analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) without any further clean-up step. The pesticides are separated on a reversed-phase polar column using a gradient elution. Fifty-five simultaneous MS-MS transitions of precursor ions were monitored (two or three for each pesticide). Studies at fortification levels of 0.001-0.020 and 0.010-0.200 mg/kg gave mean recoveries ranging from 76 to 106% for all compounds, except for imidacloprid, with (R.S.D.s) < or = 15%. The excellent sensitivity and selectivity of LC-MS-MS method allowed quantitation and identification at low levels also in difficult matrices with a run time of 20 min. With the developed method almost 100 samples of commercial fruit products (nectars, juices, purees) were analyzed. None of samples contained residues higher than 0.010 mg/kg.  相似文献   

8.
A method is described for the determination of 251 pesticide and degradation product residues in fruit and vegetable samples. Extraction of the sample with acetonitrile is followed by a salting-out step. Co-extractives are removed by passing a portion of the acetonitrile extract through an octadecyl (C18) solid-phase extraction cleanup cartridge and then, in a second cleanup, through a carbon cartridge coupled to an amino propyl cartridge. Determination is by gas chromatography with mass-selective detection in the selected-ion monitoring mode, and by liquid chromatography with post-column reaction and fluorescence detection for N-methyl carbamates. The method has been used for analysis of various fruits and vegetables, such as apple, banana, cabbage, carrot, cucumber, lettuce, orange, pear, pepper, and pineapple. Limits of detection range between 0.02 and 1.0 mg/kg for most compounds. Over 80% of the compounds have a limit of detection of < or = 0.04 mg/kg.  相似文献   

9.
10.
A multi-residue screening method was developed for the simultaneous analysis of 73 pesticides and their metabolites using high-performance liquid chromatography coupled with electrospray tandem mass spectrometry. These pesticides were determined under a single set of experimental conditions involving a simple acetonitrile extraction without the requirement for a clean-up step. Validation was achieved at 0.01 and 0.1 mg kg(-1) levels in apple, lettuce and orange. Recoveries were in the range 77-124% for the majority of pesticides.  相似文献   

11.
熊晓鹏 《高分子科学》2014,32(2):209-217
Intrinsic viscosities for a given polyelectrolyte in salt free and low-salt solvents reported in literatures are normally not comparable, because of inadequate valuation procedures. This article describes a theoretically justified reliable method, which is free of any model assumptions: The so called Wolf plot (logarithm of the relative viscosity as a function of polymer concentration) enables the unequivocal determination of intrinsic viscosities for all kinds of macromolecules, irrespective of whether they are chain molecules of different architecture or globular polymers, whether they are charged or uncharged. The validation of the method was examined by evaluation of the viscosities of a polyelectrolyte, some uncharged polymers of different architectures, uncharged polymer blends, and some literature data.  相似文献   

12.
This paper is aimed at reporting a full validation of a Cold Vapour Atomic Absorption Spectrometry (CVAAS) method for mercury determination in fishery products. Method precision, trueness, limit of detection and limit of quantification are evaluated. The uncertainty of measurement is estimated following the bottom-up approach in conjunction with the validation data as suggested for complex analysis. The precision is evaluated using a pooled relative standard deviation and the recovery is added to the measurement uncertainty budget. Uncertainties of weight of sample, dilution factor, calibration, work solution and analyte amount are also assessed. The most relevant uncertainty sources result those associated to amount of mercury determined in the final sample solution, to method precision and to recovery. The relative contributions have different weights according to the analyst decision regarding recovery correction of results. In conclusion, the adopted CVAAS method fully complies with EU requirements. Presented at AOAC Europe/Eurachem Symposium March 2005, Brussels, Belgium  相似文献   

13.
A method to determine organochlorine pesticides in horticultural samples (lettuce, tomato, spinach, potato, turnip leaf and green bean) using pressurized liquid extraction (PLE) is described and compared with microwave assisted extraction (MAE). Significant parameters affecting PLE procedure such as temperature, static extraction time and extraction solvent were optimised and discussed. Clean-up of extracts was performed by solid phase extraction (SPE) using a carbon cartridge as adsorbent. Pesticides were determined by gas chromatography and electron capture detection (GC-ECD). Analytical recoveries obtained were ca. 100% and the relative standard deviations were lower than 15% for most of the studied pesticides with the proposed methods in each analysed matrix.  相似文献   

14.
A multi-residue method has been developed and validated for the simultaneous quantification and confirmation of around 130 multiclass pesticides in orange, nectarine and spinach samples by GC-MS/MS with a triple quadrupole analyzer. Compounds have been selected from different chemical families including insecticides, herbicides, fungicides and acaricides. Three isotopically labeled standards have been used as surrogates in order to improve accurate quantitation. Samples were extracted by using accelerated solvent extraction (ASE) with ethyl acetate. In the case of spinach, an additional clean-up step by gel permeation chromatography was applied. Determination was performed by GC-MS/MS in electron ionization mode acquiring two MS/MS transitions for each analyte. The intensity ratio between quantitation transition (Q) and identification transition (q) was used as confirmatory parameter (Q/q ratio). Accuracy and precision were evaluated by means of recovery experiments in orange, nectarine, and spinach samples spiked at two concentration levels (0.01 and 0.05 mg/kg). Recoveries were, in most cases, between 70% and 120% and RSD were below 20%. The limits of quantification objective for which the method was satisfactorily validated in the three samples matrices were for most pesticides 0.01 mg/kg. Matrix effects over the GC-MS/MS determination were tested by comparison of reference standards in pure solvent with matrix-matched standards of each matrix. Data obtained showed enhancement of signal for the majority of analytes in the three matrices investigated. Consequently, in order to reduce the systematic error due to this effect, quantification was performed using matrix-matched standard calibration curves. The matrix effect study was extended to other food matrices such as raisin, paprika, cabbage, pear, rice, legume, and gherkin, showing in all cases a similar signal enhancement effect.  相似文献   

15.
This paper presents a methodology for estimation of uncertainty on a reference test method for the determination of nitrogen oxides concentration in gaseous emissions from stationary sources. As a first stage for identification of uncertainty sources, the test method is carefully reviewed in detail. Afterwards, these sources are quantified, bearing in mind its partial uncertainty, allowing the determination of the combined uncertainty and, finally, the expanded uncertainty. The calculation procedure was implemented into an excel calculation file. Using this file and considering several numerical applications from real situations, uncertainities around 15 mg/Nm3 over determined concentrations of 350 mg/Nm3 of NO x (expressed as NO2) were obtained.  相似文献   

16.
A new analytical method was devised using gas chromatography with tandem mass spectrometry (GC-MS-MS) for the routine analysis of 31 multi-class pesticide residues and approximately 8000 fresh fruit and vegetable samples (green bean, cucumber, pepper, tomato, eggplant, watermelon, melon, and marrow). Extraction of the pesticides with dichloromethane was carried out. The optimal ionization mode, either electron impact or chemical ionization, was selected for each pesticide in the same run. Carbofrit was used in the liner and combined with the selectivity of the detector this avoided additional clean-up. Thus, not only was money and time saved, the uncertainty of the method was decreased in its application to routine analysis. The average recoveries in cucumber obtained for each pesticide ranged between 71 and 119% at two different fortification levels (n=10 each) that ranged between 7 and 300 ng g(-1) (depending on the pesticide). The relative standard deviation was lower than 19% for all compounds tested. The calculated limits of detection and quantification were typically <1 ng g(-1) which were much lower than the maximum residue levels established by European legislations.  相似文献   

17.
The determination of atrazine in real samples (commercial pesticide preparations and water matrices) shows how the Fenton's reagent can be used with analytical purposes when kinetic methodology and multivariate calibration methods are applied. Also, binary mixtures of atrazine-alachlor and atrazine-bentazone in pesticide preparations have been resolved. The work shows the way in which interferences and the matrix effect can be modelled. Experimental design has been used to optimize experimental conditions, including the effect of solvent (methanol) used for extraction of atrazine from the sample. The determination of pesticides in commercial preparations was accomplished without any pre-treatment of sample apart from evaporation of solvent; the calibration model was developed for concentration ranges between 0.46 and 11.6 × 10−5 mol L−1 with mean relative errors under 4%. Solid-phase extraction is used for pre-concentration of atrazine in water samples through C18 disks, and the concentration range for determination was established between 4 and 115 μg L−1approximately. Satisfactory results for recuperation of atrazine were always obtained.  相似文献   

18.
This paper described a simple, rapid and efficient method for the determination of N-methyl carbamate pesticides in tomato, cucumber, carrot and lettuce samples by dispersive liquid-liquid microextraction coupled with HPLC-diode array detection. Some experimental parameters that influenced the extraction efficiency, such as types and volumes of extraction and disperser solvents, extraction time and salt effect were examined and optimized. Under optimum conditions, the LOD of the method were 0.5-3.0 μg/kg depending on the compounds and the kind of vegetables. The linearities of the method were obtained in the range of 10.0-300 μg/kg for aldicarb, MTMC, carbofuran and carbaryl, and 20.0-600 μg/kg for isoprocarb, with the correlation coefficients ranging from 0.9921 to 0.9993. The RSD varied from 2.9 to 7.5% (n=5). The recoveries of the method for the five carbamates from vegetable samples at two different spiking levels were ranged from 77.8 to 98.2%. Results showed that the method we proposed can meet the requirements for the determination of N-methyl carbamate in vegetable samples and was finally applied to the analysis of target pesticides in vegetable samples taken from local markets.  相似文献   

19.
The construction of a calibration curve using least square linear regression is common in many analytical measurements, and it comprises an important uncertainty component of the whole analytical procedure uncertainty. In the present work, various methodologies are applied concerning the estimation of the standard uncertainty of a calibration curve used for the determination of sulfur mass concentration in fuels. The methodologies applied include the GUM uncertainty framework, the Kragten numerical method, the Monte Carlo method (MCM) as well as the approximate equation calculating the standard error of prediction. The standard uncertainty results obtained by all methodologies agree well (0.172?C0.175?ng???L?1). Aspects of inappropriate use of the approximate equation of the standard error of prediction, which leads to overestimation or underestimation of calculated uncertainty, are discussed. Moreover, the importance of the correlation between calibration curve parameters (slope and intercept) within GUM, MCM and Kragten approaches is examined.  相似文献   

20.
Organochlorine, organophosphate pesticides and fungicides in fruits and vegetables were analyzed using disposable pipette extraction (DPX) followed by gas chromatography–mass spectrometry-selective ion monitoring (GC/MS-SIM). The intrinsic rapid mixing capabilities of DPX result in fast and efficient extractions, and eluates are concentrated by using minimal elution solvent volumes rather than solvent evaporation methods. Matrix-matched calibrations were performed with reversed phase mechanisms (DPX-RP), and the limits of detection (LOD) were determined to be lower than 0.1 μg/mL for all targeted pesticides in carrot and orange sample matrices. Coefficients of determination (r2) were greater than 0.995 for most studied pesticides. DPX-RP exhibited recoveries between 72 and 116% for nonpolar and slightly polar pesticides (log P > 2) with most of the recoveries over 88%. Only very polar pesticides (e.g., acephate, mathamidophos) were not extracted well using DPX-RP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号