首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fragmentation behaviour of size selected neutral (D2O) n clusters withn4 after ionization with 70 eV electrons is subject of this work. Size selection by scattering the cluster beam from a He target beam in combination with a quadrupole mass filter and time resolved measurements at specific laboratory angles enables us to determine the neutral precursor masses of the detected ions. The measured fragment pattern is dominated by deuterated ions of the form (D2O) nx D+ withx1. The dimer fragmentation which leads with a probability of 62.5% to the D3O+ ion and with 37.5% to D2O+ can be explained by fast intracluster ion-molecule reactions of charged monomer fragments reacting with the partner molecule. For larger clusters the fragmentation process can be rationalised by the creation of an initially highly excited D3O+ (D2O) x complex which is stabilized by evaporating additional monomer units with the main fragment channel (D2O)D+ forn=3 and (D2O)2D+ forn=4. With increasing cluster size an increasing tendency of evaporation of more than one water monomer unit has been observed.  相似文献   

2.
Manganese cluster ions Mn k + (k?60) have been produced by 7 keV Xe ion bombardment and analyzed by a double-focusing mass spectrometer. Discontinuous variations of intensity are found atk=5, 14, 16, 29, 34, 45 and 54. Most of these magic numbers coincide with or differ by only one from those observed in Ar k + . The similarity in magic numbers between Mn k + and Ar k + indicates that the bonding nature in the charged Mn clusters is similar to that in the charged Ar clusters; The polarization force between a positive ion in the center of a cluster and surrounding neutral atoms is dominant binding force.  相似文献   

3.
MALDI-TOF was used to study molybdenum dioxide (MoO2) containing a nanosized fraction. The composition of cationic clusters of nonstoichiometric lower molybdenum oxides in the gas phase was determined, and the thermodynamic stabilities and configurations of isomers were calculated for selected symmetric molecular structures and for cations MoSO 8 + and Mo5O 9 + . Molecular orbital analysis was performed for two trigonal-bipyramidal clusters Mo5O8 and Mo5O9. Changes in molybdenum–molybdenum interatomic distances in going from MoO 8 + and Mo5O 9 + cations to neutral clusters are discussed.  相似文献   

4.
We report on the structural, electronic, and magnetic properties of manganese‐doped silicon clusters cations, SinMn+ with n=6–10, 12–14, and 16, using mass spectrometry and infrared spectroscopy in combination with density functional theory computations. This combined experimental and theoretical study allows several structures to be identified. All the exohedral SinMn+ (n=6–10) clusters are found to be substitutive derivatives of the bare Sin+1+ cations, while the endohedral SinMn+ (n=12–14 and 16) clusters adopt fullerene‐like structures. The hybrid B3P86 functional is shown to be appropriate in predicting the ground electronic states of the clusters and in reproducing their infrared spectra. The clusters turn out to have high magnetic moments localized on Mn. In particular the Mn atoms in the exohedral SinMn+ (n=6–10) clusters have local magnetic moments of 4 μB or 6 μB and can be considered as magnetic copies of the silicon atoms. Opposed to other 3d transition‐metal dopants, the local magnetic moment of the Mn atom is not completely quenched when encapsulated in a silicon cage.  相似文献   

5.
The emission of neutral and positively charged silver clusters during sputtering of a polycrystalline silver target by 5 keV Ar+ ion bombardment has been studied and the sputter ejected silver flux has been characterized. As a result, the silver flux is found to be strongly dominated byneutral clusters rather than cluster ions. The contribution of neutral clusters in the overall silver flux decreases rapidly and monotonically with increasing cluster size n and decreases, in addition, with decreasing bombarding energy. The well known alternation of the secondary ion intensities of Ag n + as a function of cluster size (higher intensities for odd n) is found to be correlated with the effective ionization potentials of the corresponding sputtered neutral clusters.  相似文献   

6.
The first Te–Mn–CO clusters were obtained by the thermal reaction of K2TeO3 with [Mn2(CO)10] in MeOH. The basicity of the μ4-Te ligand in the octahedral cluster anion [(μ4-Te)2Mn4(CO)12]2− is demonstrated by its binding to the fragment [(TeMe2)Mn(CO)4]+ in an axial fashion to afford the novel cluster 1 .  相似文献   

7.
Fragmentation of sodium cluster ions (Na x + ,x<42) was studied via photoionisation of neutral precursors. Expansions of metal vapor out of cylindrical and conical nozzles yielded supersonic beams with differing cluster compositions. Measurements of photoionisation efficiency curves in the 3–6 eV range for both types of expansion allow quantitative separation of direct ionisation and unimolecular dissociation contributions to specific ion signals. Data for Na 8 + and Na 7 + are analysed to yield lower limits on bond energies. Results obtained for larger clusters are also discussed.  相似文献   

8.
The mass spectra of Xe n + clusters (n=2–13) were recorded using a supersonic beam and an ion time-of-flight mass analyser. The yield of Xe 2 + , Xe 3 + and Xe 4 + cluster ions was measured with a resolution of 0.1 Å (1 meV) in the 1024–1113 Å (11.1–12.1 eV) region. Autoionizing Rydberg series of Xe2 converging to theC 23/2u state of Xe 2 + were observed in the spectrum of Xe 2 + . The photoionization yield of Xe 3 + and Xe 4 + ions each displayed similar broad features that contained no fine structure corresponding to vibrational states. The broad features were assigned to autoionizing Rydberg series by analogy with the dimer ion spectrum.  相似文献   

9.
Complexes of Mn2+ with deprotonated GlyGly are investigated by sustained off‐resonance irradiation collision‐induced dissociation (SORI‐CID), infrared multiple‐photon dissociation spectroscopy, ion–molecule reactions, and computational methods. Singly [Mnn(GlyGly‐H)2n?1]+ and doubly [Mnn+1(GlyGly‐H)2n]2+ charged clusters are formed from aqueous solutions of MnCl2 and GlyGly by electrospray ionization. The most intense ion produced was the singly charged [M2(GlyGly‐H)3]+ cluster. Singly charged clusters show extensive fragmentations of small neutral molecules such as water and carbon dioxide as well as dissociation pathways related to the loss of NH2CHCO and GlyGly. For the doubly charged clusters, however, loss of GlyGly is observed as the main dissociation pathway. Structure elucidation of [Mn3(GlyGly‐H)4]2+ clusters has also been done by IRMPD spectroscopy as well as DFT calculations. It is shown that the lowest energy structure of the [Mn3(GlyGly‐H)4]2+ cluster is deprotonated at all carboxylic acid groups and metal ions are coordinated with carbonyl oxygen atoms, and that all amine nitrogen atoms are hydrogen bonded to the amide hydrogen. A comparison of the calculated high‐spin (sextet) and low‐spin (quartet) state structures of [Mn3(GlyGly‐H)4]2+ is provided. IRMPD spectroscopic results are in agreement with the lowest energy high‐spin structure computed. Also, the gas‐phase reactivity of these complexes towards neutral CO and water was investigated. The parent complexes did not add any water or CO, presumably due to saturation at the metal cation. However, once some of the ligand was removed via CO2 laser IRMPD, water was seen to add to the complex. These results are consistent with high‐spin Mn2+ complexes.  相似文献   

10.
The stability of gold cluster ions Au n + (2n23) has been investigated via collision induced dissociation in a Penning trap. Threshold energies and dissociation channels have been determined. The cluster stability exhibits a pronounced odd — even alternation: Clusters with an odd number of atoms,n, are more stable than the even-numbered ones. Enhanced stabilities are found for Au 3 + , Au 9 + , and Au 19 + in accordance with the Clemenger-Nilsson and the deformed jellium model of delocalized valence electrons. Excited odd cluster ions withn15 predominantly decay by evaporation of dimers; all others decay by monomer evaporation. From the dissociation channels estimates of the binding energies are deduced.This publication comprises part of the thesis of St. Becker  相似文献   

11.
The ab initio CI study of excited states of alkali metal clusters accounts for spectroscopical patterns obtained from the photodepletion spectra of the neutral or cationic species, predicts the excitation energies and transition intensities in the complete agreement with the measured quantities and permits an assignment of the cluster structures. The calculated optical spectra for various clusters with 4 and 8 valence electrons are compared: Na4, Li4, LiNa3; Na8 and Na 9 + . A molecular interpretation of the rich spectra of tetramers as well as of the dominant intense transitions located at ~2.5–2.7 eV in the case of Na8 and Na 9 + with the weak fine structure shifted to the red is given.  相似文献   

12.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

13.
Density functional theory calculations are reported on a set of three model structures of the Mn4Ca cluster in the water‐oxidizing complex of Photosystem II (PSII), which share the structural formula [CaMn4C9H10N2O16]q+ ? (H2O)n (q=?1, 0, 1, 2, 3; n=0–7). In these calculations we have explored the preferred hydration sites of the Mn4Ca cluster across five overall oxidation states (S0 to S4) and all feasible magnetic‐coupling arrangements to identify the most likely substrate–water binding sites. We have also explored charge‐compensated structures in which the overall charge on the cluster is maintained at q=0 or +1, which is consistent with the experimental data on sequential proton loss in the real system. The three model structures have skeletal arrangements that are strongly reminiscent, in their relative metal‐atom positions, of the 2.9‐, 3.7‐, and 3.5 Å‐resolution crystal structures, respectively, whereas the charge states encompassed in our study correspond to an assignment of (MnIII)3MnII for S0 and up to (MnIV)3MnIII for S4. The three models differ principally in terms of the spatial relationship between one Mn (Mn(4)) and a generally robust Mn3Ca tetrahedron that contains Mn(1), Mn(2), and Mn(3). Oxidation‐state distributions across the four manganese atoms, in most of the explored charge states, are dependent on details of the cluster geometry, on the extent of assumed hydration of the clusters, and in some instances on the imposed magnetic‐coupling between adjacent Mn atoms. The strongest water‐binding sites are generally those on Mn(4) and Ca. However, one structure type displays a high‐affinity binding site between Ca and Mn(3), the S‐state‐dependent binding‐energy pattern of which is most consistent with the substrate water‐exchange kinetics observed in functional PSII. This structure type also permits another water molecule to access the cluster in a manner consistent with the substrate–water interaction with the Mn cluster, seen in electron spin‐echo envelope modulation (ESEEM) studies of the functional enzyme in the S0 and S2 states. It also rationalizes the significant differences in hydrogen‐bonding interactions of the substrate water observed in the FTIR measurements of the S1 and S2 states. We suggest that these two water‐binding sites, which are molecularly close, model the actual substrate‐binding sites in the enzyme.  相似文献   

14.
The kinetics of the formation and decomposition of MnIII have been investigated spectrophotometrically in acidic media at 25 °C. The complete rate law for MnIII formation isCrVI + DMF + MnII {H+} MnIII + CO2 + Me2NH + CrIII ... (1)MnIII + DMF {H+} MnII + CO2 + Me2NH ... (2)expressed by k obs1 = k 1 k1 K a1[H+][DMFH+][MnII]/{1 + K a1[H+]}. MnIII reduction by DMF follows the rate law k obs2 = k 2 K h[DMF][H+]2/{[H+] + K h}. The above results are accounted for by a mechanism involving the intermediacy of CrIV.  相似文献   

15.
The structures and properties of Al n , Al n + , Al n (n=1,5) clusters have been investigated by using the Linear Combination of Gaussian Type Orbitals (LCGTO) method, considering Local (LSD) and Non Local (NLSD) Spin Density Approximations and employing a Model Core Potential (MCP) that allows the explicit treatment of 3s 2 3p 1 valence electrons. For each system different geometrical structures and electronic states have been considered. For Al3, Al 3 + , Al 3 the most stable geometry proved to be the equilateral triangle (D 3h ). Al4 and Al 4 + prefer the rhombus (D 2h ) structure, while the corresponding anion prefers the square (D 4h ) one. The trapezoidal form (C 2v ) is the most stable isomer for Al5, Al 5 + and Al 5 clusters. The analysis of vibrational frequencies shows that these structures are minima in the potential energy surface. The binding energies (D e), the adiabatic ionization potentials (IP) and electron affinities (EA), the chemical potentials or absolute hardnesses () and electronegativities () have been computed. Results are in good agreement with the available experimental data and the previous high level theoretical computations.  相似文献   

16.
Summary The kinetics of the reaction between H2O2 and some Schiff base complexes of MnIII have been investigated in both aqueous and micellar sodium dodecyl sulphate (SDS) solution. The reaction rate is first order in both H2O2 and [complex], and inversely proportional to [H+]. The second-order rate constant increases in the sequence [Mn(salophen)(OAc)] > [Mn(salen)(OH2)]-ClO4 > [Mn(salen)(OAc)]H2O, where salen = N,N-bis-(salicylidene)ethylenediamine and salophen = N,N-bis-(salicylidene)-o-phenylenediamine. At SDS concentrations below the critical micellar concentration, there is almost no effect on the rate of reaction whereas at higher concentrations the reaction rate increases slightly. A mechanism involving MnII and a peroxo intermediate is proposed.  相似文献   

17.
Zhao-Qi  Wang  Hai-Yan  Wang  Zeng  Zhao-Yi  Yan  Cheng 《Structural chemistry》2019,30(1):151-165

Detecting the underlying performance of hydrated electrons and hydroxyl radicals in the cationic water cluster can greatly help to understand the inter reaction mechanism in the liquid water and aqueous solutions. Based on our previous (H2O)10+ research, we have paid attention to more problems of larger cationic clusters in this work, including the existence of hemibonded type, long-range correction functions, and hydrogen-bonded site analyses. The lower-energy structures of the cationic water cluster (H2O)12+ have been comprehensively explored, and more experienced functions are introduced to check the ground state and vibration spectrum. Unlike the configuration regularity of neutral (H2O)12 clusters and small cationic water clusters, those new-found structures for (H2O)12+ are inclined to adopt three dimension (3D) cage-like structures and the H2O-OH2 structure appears in the higher energy isomer. The calculation reveals that the lowest stable isomer is the 3D cage structure W14 predicted at MP2 level, which has not been reported yet. In the thermal simulation, structure transition from the cage-like to the ring-like occurs at T?>?≈256 K, and the two dimension (2D) ring-like structure occupies a dominant position at high temperature range. The infrared spectra explain that the difference of the spectra between the 2D net structures and 3D cage-structures is mainly caused by the weight fluctuation of single acceptor-single donor (AD), double acceptor-single donor (AAD), and single acceptor-double donor (ADD) sites in these isomers. This further gives a similarity relation between (H2O)12+ and H+(H2O)12 clusters in the shape of the network and spectral characteristics. By molecular orbitals and topological analysis, we find that the lone pair orbital on hydroxyl radical dominates the reactivity and stability of cationic system. The present research may be helpful for exploring the evolution law of the larger cationic water clusters in the future.

  相似文献   

18.
The structures and relative stabilities of high‐spin n+1Aun?1Ag and nAun?1Ag+ (n = 2–8) clusters have been studied with density functional calculation. We predicted the existence of a number of previously unknown isomers. Our results revealed that all structures of high‐spin neutral or cationic Aun?1Ag clusters can be understood as a substitution of an Au atom by an Ag atom in the high‐spin neutral or cationic Aun clusters. The properties of mixed gold–silver clusters are strongly sized and structural dependence. The high‐spin bimetallic clusters tend to be holding three‐dimensional geometry rather than planar form represented in their low‐spin situations. Silver atom prefers to occupy those peripheral positions until to n = 8 for high‐spin clusters, which is different from its position occupied by light atom in the low‐spin situations. Our theoretical calculations indicated that in various high‐spin Aun?1Ag neutral and cationic species, 5Au3Ag, 3AuAg and 5Au4Ag+ hold high stability, which can be explained by valence bond theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

19.
A neutral C60 fullerene beam is ionised by 308 nm laser pulses. For each cluster sizeC n + , 0n60 of the typical bimodal mass distributions known from the literature [1] velocity distributions have been determined by a time of flight method. A consistent interpretation of the measured mean velocities is obtained when binary fission of the parent molecule is assumed to be responsible for the fragmentation patterns, the total kinetic energy release being 0.45±0.1 eV independent of fragment mass and of laser fluence.  相似文献   

20.
Paramagnetic MnII and MnIII complexes containing two ferrocenylethynyl ligands were synthesized. Their redox reactions were studied by cyclic voltammetry and chemical methods. The structures of the resulting compounds were determined by IR, 1H NMR, and ESR spectroscopy. The structure of the complex [(FcCC)2Mn(dmpe)2]+PF6 was established by X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号