首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tuna fishes were collected in the Straits of Messina (Italy), were dissected and dorsal muscles minced, freeze-dried, ground and sieved. The obtained powder was stabilised by γ-irradiation and filled into brown glass bottles. The homogeneity and stability at +20 °C and +40 °C were verified with regards to the total arsenic, dimethylarsinic acid and arsenobetaine contents. Ten laboratories participated in the certification study. All participants had demonstrated beforehand their ability to produce accurate results for the As speciation in fish tissue. The certified values are: total arsenic (4.8 ± 0.3) mg/kg, arsenobetaine (52 ± 3) μmol/kg, dimethylarsinic acid (2.0 ± 0.3) μmol/kg. The material is available from the BCR since early 1998. Received: 31 March 1998 / Revised: 20 July 1998 / Accepted: 25 July 1998  相似文献   

2.
Urinary arsenic speciation is considered to be an effective procedure to differentiate between toxic inorganic and less toxic organic arsenic exposure. The aim of the present work was to develop a new method for the simultaneous determination of the main arsenic species so far detected in urine: arsenite (As(III)), arsenate (As(V)), methylarsonic acid (MA), dimethylarsinic acid (DMA), and arsenobetaine (AsB). The method is based on anion exchange HPLC coupled on-line to an inductively coupled plasma mass spectrometer (ICP-MS) for element specific detection. Experimental parameters, such as column type and composition of the mobile phases were optimized in order to get best separation, little matrix interferences, lowest detection limits, and short total times of analyses. Best chromatographic conditions were obtained by using a Dionex AS14 anion exchange column and a gradient elution with tetramethylammonium hydroxide and ammonium carbonate as eluting compounds. The detection limits (3 σ) were found to be in the sub μg L–1 range. The method was applied to analyze different urine samples from persons with and without consumption of seafood. To avoid significant matrix influences, samples (24 h urine) had to be diluted 1 : 5 with water and were filtered through a 0.45 μm filter prior to analyses. Special attention was focused on the validation of the method according to the regulations of the “Deutsche Forschungsgemeinschaft” (DFG) for the analyses of hazardous substances in biological materials. Received: 22 December 1997 / Revised: 18 February 1998 / Accepted: 22 February 1998  相似文献   

3.
The preparation of a certified reference material of polar pesticides in freeze-dried water is described. The pesticides selected were atrazine, simazine, carbaryl, propanil, linuron, fenamiphos and permethrin which were added to 6000 litres of tap water at 50–80 μg · L–1 (200–320 μg · L–1 for permethrin) level in presence of NaCl (2.5 g · L–1) prior lyophilization. After the freeze-drying process the residue was rehomogenized, filled into amber glass bottles and stored at –20 °C, +4 °C and +20 °C. All pesticides were determined by HPLC/diode array detector, except permethrin which was determined by GC/ECD. The results obtained for atrazine, simazine, carbaryl, propanil, linuron and fenamiphos showed no within- or between-bottle inhomogeneity, however the material was non-homogeneous for permethrin and therefore this was withdrawn from further studies. With respect to the stability for over one year, all pesticides were stable at –20 °C. At +4 °C all pesticides were stable for at least 9 months and at +20 °C the stability was demonstrated only during the first month of storage. The content (mass fractions) of atrazine, simazine, carbaryl, propanil and linuron in freeze-dried water (CRM 606) was certified by an interlaboratory testing and a certification campaign. Received: 7 September 1998 / Revised: 13 November 1998 / Accepted: 21 November 1998  相似文献   

4.
A silica based sorbent with an anion complexone polymer coating, [24]ane-N6 macrocycle, was prepared. The chelation properties of this material were investigated by elemental analysis, infrared spectra and Voige’s method. The polymer-coated silica column (25– 40 μm, 100 × 4.6 mm i.d.) was employed for trace metal analyses. Oxalic acid, malonic acid, succinic acid, citric acid, phthalic acid and acetic acid were used as mobile phases. Their retention characteristics were elucidated. Oxalic acid was found to be the most effective eluent. With a mobile phase consisting of oxalic acid (25 mM) and sodium nitrate (25 mM) at pH 4.2, the separation of copper(II), cadmium(II), cobalt(II) and zinc(II) in sea water could be achieved. The identification of metal ions was performed at 510 nm using 4(2-pyridylazo)resorcinol (1 × 10–4 M) as post column reagent. The limits of detection were 5 × 10–7 M, 1 × 10–5 M, 3 × 10–5 M and 2 × 10–6 M for copper(II), cadmium(II), cobalt(II) and zinc(II) based on three times the standard deviation of the response for the lowest concentration (n = 5) in the chromatogram with a sample volume of 50 μL. For evaluation of data reliability, oyster tissue (NIST SRM 1566 a) was studied with the proposed system. Received: 9 February 1998 / Revised: 15 May 1998 / Accepted: 16 June 1998  相似文献   

5.
Long term stability of organic selenium compounds (selenocystine, selenomethionine, trimethylselenonium ion) has been studied over a one year period for 2 analyte concentrations: 25 and 150 μg/L Se, at pH 4.5 in the dark, under different storage conditions: temperature of –20°C, 4°C, 20°C, 40°C; in Pyrex, Teflon, or polyethylene containers; in an aqueous matrix or in the presence of a chromatographic counter ion (pentyl sulfonate at 10–4 mol/L concentration). Light effects have also been tested. The stability of the selenium species was monitored by HPLC-ICP/MS. Storage conditions can drastically alter the stability of organic selenium species. Organoselenium compounds were shown to be stable in the dark over a one year period in an aqueous matrix at pH 4.5 in Pyrex containers at both 4°C and 20°C. Pyrex vials exposed to natural sunlight at room temperature resulted in a steady decrease of the selenoamino acid concentration. Teflon containers caused losses of less than 25% at both 4° C and 20° C in the dark. However, polyethylene vials presented, at all temperatures tested, a rapid decrease of the TMSe+ concentration. The stability of the Se species studied did not show significant differences between 4° C and 20° C in any container material used. Storage of solutions at 40° C led to slight differences between the Pyrex and Teflon containers. However, polyethylene presented a drastic decrease of the three species over time at this higher temperature. Solutions frozen at –20° C in polyethylene vials did not stabilize the TMSe+ signal. Finally, concentrations and matrices of the samples did not significantly affect the stability of the species. Received: 15 July 1996 / Revised: 14 July 1997 / Accepted: 18 July 1997  相似文献   

6.
Cation exchange and anion exchange liquid chromatography were coupled to an ICP-MS and optimised for the separation of 13 different arsenic species in body fluids (arsenite, arsenate, dimethylarsinic acid (DMAA), monomethylarsonic acid (MMAA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA), arsenobetaine (AsB), arsenocholine (AsC), dimethylarsinoyl ethanol (DMAE) and four common dimethylarsinoylribosides (arsenosugars). The arsenic species were determined in seaweed extracts and in the urine and blood serum of seaweed-eating sheep from Northern Scotland. The sheep eat 2–4 kg of seaweed daily which is washed ashore on the most northern Island of Orkney. The urine, blood and wool of 20 North Ronaldsay sheep and kidney, liver and muscle from 11 sheep were sampled and analysed for their arsenic species. In addition five Dorset Finn sheep, which lived entirely on grass, were used as a control group. The sheep have a body burden of approximately 45–90 mg arsenic daily. Since the metabolism of arsenic species varies with the arsenite and arsenate being the most toxic, and organoarsenic compounds such as arsenobetaine the least toxic compounds, the determination of the arsenic species in the diet and their body fluids are important. The major arsenic species in their diet are arsenoribosides. The major metabolite excreted into urine and blood is DMAA (95 ± 4.1%) with minor amounts of MMAA, riboside X, TMA and an unidentified species. The occurrence of MMAA is assumed to be a precursor of the exposure to inorganic arsenic, since demethylation of dimethylated or trimethylated organoarsenic compounds is not known (max. MMAA concentration 259 μg/L). The concentrations in the urine (3179 ± 2667 μg/L) and blood (44 ± 19 μg/kg) are at least two orders of magnitude higher than the level of arsenic in the urine of the control sheep or literature levels of blood for the unexposed sheep. The tissue samples (liver: 292 ± 99 μg/kg, kidney: 565 ± 193 μg/kg, muscle: 680 ± 224 μg/kg) and wool samples (10 470 ± 5690 μg/kg) show elevated levels which are also 100 times higher than the levels for the unexposed sheep. Received: 29 February 2000 / Revised: 26 April 2000 / Accepted: 1 May 2000  相似文献   

7.
 A new resin has been synthesized by functionalisation of polystyrene-divinylbenzene (8%) with imidazole 4,5-dicarboxylic acid through –N=N– bonding. The resulting resin has been characterised by elemental analysis, thermogravimetric analysis, infrared spectroscopy, hydrogen ion capacity and metal ion capacity. The speciation study of vanadium has been studied by using this resin and the maximum exchange capacity was found to be 0.45 mmol g−1 for V4+ and that for V5+ was 1.57 mmol g−1 at pH 3 for both. The eluents malonic acid and sodium hydroxide have been used for the selective separation of vanadium(IV) and vanadium(V) species respectively. The effects of diverse ions on the sorption and recovery of each species have been studied. Finally, the developed method has been applied for the speciation and determination of these two species in natural water samples. Correspondence: Department of Chemistry, The University of Burdwan, Burdwan, India. e-mail: akdas100@yahoo.com Received December 20, 2001; accepted October 11, 2002  相似文献   

8.
Five arsenic species, trimethylarsine oxide, dimethylarsenic acid, monomethylarsonic acid, arsenobetaine and sodium arsenite, in urine were analysed by inductively coupled plasma mass spectrometry with ion chromatography (IC ICP MS). Since the toxicities of different arsenic compounds are different, speciation of arsenic compounds is very important in the investigation of metabolisms. In this paper, we applied ion chromatography (IC) as a separation device and inductively coupled plasma mass spectrometry (ICP MS) as a detection device. For separation of the five arsenic compounds, an anion-exchange column and, as mobile phase, tartaric acid were used. The eluent from the IC column was introduced directly into the nebulizer of the ICP MS and analysed at 75 amu. Detection limits were from 4 to 9 pg as arsenic.  相似文献   

9.
A suitable and sensitive ion chromatographic measuring system for determining the main components at nanogram to milligram per liter levels in water samples from the electrodeionization process is presented. A modified Dionex system offers the possibility for the determination of anions and cations in the samples at ng/L, μg/L and mg/L levels. The ng/L level of anions and cations in 20–130 mL high-purity water can be analyzed immediately after preconcentration on appropriate exchange columns. The mg/L level samples are successfully determined by use of an auto-sampler. The quantification of each ion is achieved using the suppressor technique and a conductivity detector. Samples are taken from 5 steps of the electrodeionization process and stored in pre-cleaned FEP (fluorinated ethylene propylene) at 7 °C in darkness prior to the determination of chloride, nitrate, sulfate, carbonate, sodium, ammonium, potassium, calcium and magnesium. Eluents, ultrapure water and samples for the determination of carbonate were passed through special glass containers and flushed with helium gas to avoid the effect of atmospheric carbon dioxide. Results of the investigation of the cationic and anionic composition in water samples within the electrodeionization process are presented and discussed. Received: 12 October 1998 / Revised: 16 December 1998 / Accepted: 19 December 1998  相似文献   

10.
Emulsion liquid membranes (ELM) consisting of L113A (surfactant), liquid paraffin (stabilizer) and kerosene (solvent), with HCl solution acting as the external phase and KOH solution acting as the internal phase, were applied to the prior separation of arsenic(III) and arsenic(V) with subsequent spectrophotometric determination by AgDDTC. The effect of various parameters on the recovery of arsenic(III) were investigated. 8 mol/L HCl was required for 95% As(III) recovery. After reduction of As(V) to As(III) with sufficient KI, total arsenic could be determined. The RSD of As(III) and As(total) were both less than 3%. The procedure was applied to aqueous samples with a recovery of 93.5%–101%. Received: 22 March 1998 / Revised: 12 September 1998 / Accepted: 17 September 1998  相似文献   

11.
Emulsion liquid membranes (ELM) consisting of L113A (surfactant), liquid paraffin (stabilizer) and kerosene (solvent), with HCl solution acting as the external phase and KOH solution acting as the internal phase, were applied to the prior separation of arsenic(III) and arsenic(V) with subsequent spectrophotometric determination by AgDDTC. The effect of various parameters on the recovery of arsenic(III) were investigated. 8 mol/L HCl was required for 95% As(III) recovery. After reduction of As(V) to As(III) with sufficient KI, total arsenic could be determined. The RSD of As(III) and As(total) were both less than 3%. The procedure was applied to aqueous samples with a recovery of 93.5%–101%. Received: 22 March 1998 / Revised: 12 September 1998 / Accepted: 17 September 1998  相似文献   

12.
 Two-phase systems consisting of a polymer rich phase and polymer depleted phase, where the polymer is either ethyl(hydroxy ethyl)cellulose (EHEC) or Ucon (a random copolymer of ethylene oxide and propylene oxide), have been studied. Both of these polymers can be separated from an aqueous solution by either temperature increase or addition of cosolutes. The polymers are thermoseparating and phase separate in water solutions at the cloud point temperature. Two types of EHEC have been studied: one with a cloud point at 60 °C and the other at 37 °C. The Ucon polymer used in this study has a cloud point at 50 °C. Ternary phase diagrams of polymer/water/cosolute systems have been investigated. When a strongly hydrophilic or hydrophobic cosolute is added to an EHEC- or Ucon–water solution, a phase separation occurs already at, or below, room temperature. As cosolutes, hydrophobic molecules like phenol, butyric and propionic acid, and hydrophilic molecules like glycine, ammonium acetate, sodium carboxylates (acetate to valerate), were studied. The polymer rich phase formed when mixing polymer, water and cosolute was strongly enriched or depleted with hydrophobic or hydrophilic cosolutes, respectively. The two phase region increased for propionic acid, butyric acid and phenol as a result of increased cosolute hydrophobicity. The opposite occurred in the series sodium acetate, sodium butyrate and sodium valerate. The effect of temperature on the phase behaviour has also been investigated. Model calculations based on Flory–Huggins theory of polymer solutions are presented, in form of a phase diagram, which semiquantitatively reproduce some experimental results. Received: 5 July 1996 Accepted: 4 November 1996  相似文献   

13.
 The generation of volatile species of As(III) as a means to introduce arsenic into a flame atomic absorption spectrometer has been studied. The method is based on the reaction between As(III) and chloride ions in sulphuric acid medium. The reaction is performed in a discontinuous or batch mode. With this method 130 μl of a solution containing 17.5% (w/v) sodium chloride and As(III) are injected by a 500 ml.min−1 N2 carrier gas flow into 1 ml of concentrated sulphuric acid. The gaseous compounds generated are introduced into the spectrometer through the nebulizer and As is determined. Received October 3, 1998. Revision January 6, 1999.  相似文献   

14.
Summary Capillary zone electrophoresis has been used to separate arsenite, arsenate, dimethylarsinic acid, and phenyl-,p-aminophenyl-, ando-aminophenylarsinic acids. Identification and quantification of the arsenic species at mg L−1 levels was possible by use of direct UV detection at 200 nm. The relative standard deviation (n=7) ranged from 0.97 to 1.52% for migration times and from 2.08 to 4.31% for peak areas. A method for rapid separation of inorganic arsenic species was also developed; by use of this method arsenite and arsenate could be separated within 2 min. Presented at Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 1–3, 1999  相似文献   

15.
An analytical characterization of microbiological oxidation and reduction of sulfur anions has been performed with dual ion chromatography. The apparatus consisted of two chromatographic lines combined by a sample injection valve that allows the simultaneous introduction of a sample solution to both systems. With system 1 non-suppressed conductivity detection of sulfite and sulfate after separation in phthalate eluent was performed. For sulfide, thiosulfate and thiocyanate amperometric detection using a carbonate eluent was carried out on system 2. Parallel runs were possible for these species which could not be separated with one system. Optimizing separation and detection, limits of quantification of 0.02–0.3 mg/L could be obtained. The on-line coupling of a reaction vial to the injection valve was used to investigate the bacterial conversions, because the samples could be taken without contamination and air introduction. Thiosulfate was detected as a metabolite in both sulfur reduction and oxidation. Capillary electrophoresis with conductivity detection was applied as a complimentary technique for monitoring the bacterial sulfur oxidation. The results showed good correlation to the concentration values obtained by ion chromatography. Received: 14 May 1999 / Revised: 7 July 1999 / Accepted: 10 July 1999  相似文献   

16.
 A simple, rapid and accurate complexometric method is proposed for the determination of titanium(IV) where sodium potassium tartrate or ascorbic acid were used as masking agents. In the presence of diverse metal ions, titanium is first complexed with excess of EDTA and surplus EDTA is then titrated at pH 5–6 with zinc sulfate, xylenol orange being used as indicator. An excess of 5% aqueous sodium potassium tartrate is then added to displace the complexed EDTA from the Ti-EDTA complex quantitatively, which is titrated with zinc sulfate. Also, ascorbic acid may be used as the releasing agent. The methods work well in the range 1–53 mg of Ti(IV) for sodium potassium tartrate with relative errors ± 0.28% and standard deviations ≤ 0.16 mg. For ascorbic acid the range is 1.00–30.00 mg of Ti(IV) with relative errors of ± 0.40% and standard deviations of ≤ 0.05 mg Received October 9, 2001; accepted August 2, 2002  相似文献   

17.
Chlorpropamide ((4-chloro-N-(propylamino)-carbonyl)-benzenesulfonamide) belongs to compounds having sulfonylurea group and is widely used as an oral antidiabetic agent. In this work differential scanning calorimetry (DSC) was used during pre-formulation of chlorpropamide tablets to determine the drug-excipients compatibility. The DSC curves of chlorpropamide and binary mixtures with excipients (sodium croscarmellose, sodium lauryl sulfate, microcrystalline cellulose, magnesium stearate and calcium carbonate) showed that chlorpropamide exhibited interaction with magnesium stearate and sodium lauryl sulfate. The binary mixtures of chlorpropamide–magnesium stearate presented a single endothermic process at 96–108 °C and chlorpropamide–sodium lauryl sulfate showed a wide endotherm at 99–120 °C.  相似文献   

18.
 The transport behavior of bile salts (BSs) solubilizing cholesterol (Ch) or none across an artificial membrane was investigated for sodium salts of deoxycholic acid (NaDC), chenodeoxycholic acid (NaCDC), ursodeoxycholic acid (NaUDC) and cholic acid (NaC) in tetraborate–carbonate buffer solution at pH 10.0 and 37 °C. The study demonstrated that the surfactant properties such as critical micellization concentration (CMC) and micellar size or diffusion coefficient were determinable from the flux or permeability measurements. The comparison among the respective pure systems of BSs led to a conclusion that the micellar size was in the order of NaDC>NaCDC>NaUDC>NaC and determined CMC values were in agreement with those in literature. The magnitude of solubilizing power (capacity) of BS for Ch was found to decrease in the order of NaDC>NaCDC>NaC>NaUDC; this order is in accordance with that of the empirical hydrophobicity index. The hydrodynamic radii for the singly dispersed species and the micellar species of the respective BSs and of Ch-solubilizing micelles were estimated from the permeability data; the radii of the Ch-solubilizing micelles are approximately 12–15 Å and interestingly, smaller than those of the respective BS alone micelles ranging from 14 to 22 Å. Received: 15 April 1997 Accepted: 25 July 1997  相似文献   

19.
Arsenic speciation analysis in marine samples was performed using ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP‐MS) detection. The separation of eight arsenic species, viz. arsenite, monomethyl arsonic acid, dimethylarsinic acid, arsenate, arsenobetaine, tetramethylarsine oxide, arsenocholine and tetramethylarsonium ion was achieved on a Dionex AS4A (weaker anion exchange column) by using a nitric acid pH gradient eluent (pH 3.3 to 1.3). The entire separation was accomplished in 12 min. The detection limits for the eight arsenic species by IC–ICP‐MS were in the range 0.03–1.6 µ g l?1, based on 3σ of the blank response (n = 6). The repeatability and day‐to‐day reproducibility were calculated to be less than 10% (residual standard deviation) for all eight species. The method was validated by analyzing a certified reference material (DORM‐2, dogfish muscle) and then successfully applied to several marine samples, e.g. oyster, fish muscle, shrimp and marine algae. The low power microwave digestion was employed for the extraction of arsenic from seafood products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
 Poly(N-isopropylacrylamide) (PNIPAM) precipitates out of water around 32 °C. This critical temperature is raised when hydrophilic acrylamide sequences are present on the polymer chain. We have used neutron scattering to study the structural properties of a statistical copolymer containing acrylamide and N-isopropylacrylamide segments at different temperatures and its interactions with an anionic surfactant, sodium dodecyl sulfate (SDS). At low temperatures, the copolymer behaves as a swollen polymer coil. With an increase in temperature, intermolecular attractions are observed, and close to the critical temperature of the copolymer, microphase separation is observed. Here, the structure consists of dense nodules of hydrophobic sequences stabilized by hydrophilic sequences. In the presence of a small amount of SDS, additional colloidal stability is observed: the nodule size is decreased. At high SDS concentration, the copolymer is completely solubilized at all temperatures studied and the structure of the polymer–surfactant complex resembles the “necklace” structure obtained for the homopolymer PNIPAM–SDS system. Received: 11 November 1999 Accepted: 15 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号