首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caudron  E.  Baghriche  S.  Prognon  P.  Pradeau  D. 《Chromatographia》2013,76(13):747-755

For the first time, a simple and rapid method for simultaneous determination of gentamicin sulfate and colistin sulfate in two pharmaceutical formulations for children and adults by ion-pairing reverse phase chromatography and low-UV detection at 215 nm has been developed. This simultaneous analysis is thus a challenge due to the multicomponent mixture of high polar, non volatile and non UV absorbing chromophores. Rapid separation required less than 5 min on a Waters X-Terra® C18 MS column (50 mm × 4.6 mm i.d., 2.5 μm) with temperature maintained at 35 °C. A linear gradient from 15/85 to 40/60 acetonitrile/water (v/v) with constant hexafluorobutyric acid (HFBA) concentration of 0.05 % (v/v) was used as pairing reagent at 1.5 mL min−1. In pharmaceutical analysis, the basic and polar compounds are separated by ion-pairing chromatography and the detection of analytes with weak chromophores requires working at low wavelengths. This application is an example of troubleshooting, i.e. baseline drift, due to gradient elution and absorbance of the ion-pairing agent. Baseline drift was minimized by optimizing the HFBA concentration gradient and its slope. Complete analytical validation was carried out according to the International Conference of Harmonization, and real samples were analyzed to demonstrate the applicability of the proposed method for routine use.

  相似文献   

2.
The first simultaneous quantification of neomycin and bacitracin using liquid chromatography evaporative light scattering detection as an alternative to MS detection and pre-/post-column derivatisation, respectively, was the aim of this study. The developed method was validated for two strength of neomycin and one strength of bacitracin in sterile pharmaceutical formulation and is a fast and efficient tool for content uniformity tests in quality control. With this method the separation of neomycin from sulfate and the base line separation of the four major components of bacitracin (bacitracin A, B1, B2 and B3) was achieved. These four components are responsible for 96% of the microbiological activity. A Phenomenex Synergi POLAR analytical column (250 mm × 4.6 mm, 4 μm I.D.) in combination with 0.5% perfluoropropionic acid and acetonitrile in gradient mode, the peaks of interest could be separated with high efficiency within 14 min. The calibration was performed using a second order regression with an R 2 = 0.9999 for neomycin (B and C) sulfate and R 2 = 0.9996 for bacitracin A, B1, B2 and B3. The results of the accuracy evaluation were 99.2 and 99.7%, respectively, for neomycin and 100.8% for bacitracin. Injection precision results are 0.4–1.5 RSD% recorded for six injections. The established method has a high potential for routine high-throughput analyses in the pharmaceutical industry.  相似文献   

3.

A liquid chromatography method was developed and validated for the simultaneous determination of ezetimibe and simvastatin in pharmaceutical formulations. Optimum separation was achieved in less than 10 min using a C8 column (200 mm × 4.6 mm i.d., particle size 5 μm) and elution was accomplished by the application of a dual-mode solvent and flow-rate gradient system. Detection was carried out using a diode-array detector set at 240 nm. Canrenone was used as internal standard. The method was economical in terms of the time taken and the amount of solvent used for each analysis. It was also validated with respect to system suitability, specificity, limit of quantitation and detection, linearity, precision, accuracy, and recovery, respectively. The limits of quantitation for ezetimibe and simvastatin were 0.2 and 3 μg mL−1, respectively. Limits of detections were found to be 0.05 and 0.5 μg mL−1, for ezetimibe and simvastatin, respectively. The developed method was successfully applied to the simultaneous determination of ezetimibe and simvastatin in pharmaceutical formulations.

  相似文献   

4.
A simple, accurate, precise and fully automated method for the simultaneous determination of abacavir, lamivudine and zidovudine in pharmaceutical tablets, human serum samples and drug dissolution studies has been developed. Separation was performed on a 5 μm Zorbax® C18 column (150 × 4.6 mm ID) with methanol:water:phosphate buffer at pH 5.65 (80:10:10; v/v/v) isocratic elution in less than 7 min with a flow rate of 0.6 mL min?1.Good sensitivity for all analytes was observed with UV detection at 275 nm. The method allowed quantitation over the 500–3,000 ng mL?1 range for abacavir and 500–5,000 ng mL?1 range for lamivudine and zidovudine. The method has been applied, without any interference from excipients or endogenous substances, for the simultaneous determination of these three compounds in tablets. Human serum and drug dissolution studies.  相似文献   

5.
As over 70% of pharmaceutical compounds are bases, the analysis of these basic compounds by high performance liquid chromatography (HPLC) continues to be of great value and interesting. Acetyl cholinesterase inhibitors (AChEIs), which contain the basic compounds like Rivastigmine tartrate, Galantamine hydrobromide and Donepezil with different polarities, were chosen for the study. A rapid screening of the volatile ion-pairing reagents was performed using modern techniques like ultra high performance liquid chromatography (UHPLC). The experiments were planned using the ??Design of Experiments?? (DoE) approach to identify the LC?CMS compatible ion-pair reagent. In this study, Heptafluorobutyric acid (HFBA) has given a very good peak shape with tailing factor at 1.4 and theoretical plates up to ~5,000 were observed, compared to tailing factor at 1.9 and theoretical plates up to ~3,000 with non-volatile ion-pair reagent sodium heptane sulphonate (SHS). Similarly retention with HFBA was optimum as ~5 min in short run time method compared to ~13 min with SHS. This ion-pair reagent has proved to be good replacement of sodium alkyl sulphonate modifiers. HFBA can also be used for semi-preparative work for isolation of impurities by just evaporating the solvents. It avoids the extraction of other inorganic modifiers.  相似文献   

6.
P. D. Bari  A. R. Rote 《Chromatographia》2009,69(11-12):1469-1472
Two new, rapid, precise, accurate and specific chromatographic methods were described for the simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combined tablet dosage forms. The first method was based on reversed phase liquid chromatography using an Eurosphere 100 RP C18 column (250 × 4.6 mm ID, 5 μm). The mobile phase was methanol–0.05% o-phosphoric acid (60:40 v/v) at a flow rate of 1.0 mL min?1. Commercially available tablets and laboratory mixtures containing both drugs were assayed and detected using a UV detector at 270 nm. The second method involved silica gel 60 F254 high performance thin layer chromatography and densitometric detection at 254 nm using acetonitrile–ethyl acetate–glacial acid (7:3:0.4 v/v/v) as the mobile phase. Calibration curves ranged between 200–600 and 125–375 ng spot?1 for olmesartan and hydrochlorothiazide, respectively.  相似文献   

7.
A simple, fast and precise reversed phase liquid chromatographic method was developed for the simultaneous determination of artesunate (AS) and amodiaquine (AD) in combined pharmaceutical dosage form. Chromatographic separation of the two drugs was performed on a BDS Hypersil C18, 100 mm × 4.6 mm, 3 μm particle size column as stationary phase with a mobile phase comprising of phosphate buffer (pH 3.0 with orthophosphoric acid) and acetonitrile in the proportion of 50:40 (v/v), at a flow rate of 0.8 mL min?1 and UV detection at wavelength 210 nm for AS and 300 nm for AD using photo diode array detection. The proposed method was validated for specificity, accuracy, linearity, range, precision and was successfully applied to the simultaneous determination of AS and AD in the combined fixed dosage form without any excipient’s interference.  相似文献   

8.
Dogan-Topal  B.  Ozkan  S. A.  Uslu  B. 《Chromatographia》2007,66(1):25-30

A rapid, sensitive, and specific reverse phase high performance liquid chromatography with diode array detection procedure for the simultaneous determination of abacavir, efavirenz and valganciclovir in spiked human serum is described. Separation was performed on a 5 μm Waters Spherisorb column (250 × 4.6 mm ID) with acetonitrile: methanol:KH2PO4 (at pH 5.00) (40:20:40 v/v/v) isocratic elution at a flow rate of 1.0 mL min−1. Calibration curves were constructed in the range of 50–30,000 ng mL−1 for abacavir and efavirenz, and 10–30,000 ngmL−1 for valganciclovir in serum samples. The limit of detection and limit of quantification concentrations of the HPLC method were 3.80 and 12.68 ng mL−1 for abacavir, 2.61 and 8.69 ng mL−1 for efavirenz, 1.30 and 4.32 ng mL−1 for valganciclovir. The method has been applied, without any interference from excipients or endogenous substances, for the simultaneous determination of these three compounds in human serum.

  相似文献   

9.
Asfak  Vora  Mrinalini  Damle  Leena  Bhat  Rahul  Godge 《Chromatographia》2007,66(11):941-943

A simple, selective, rapid, precise and accurate reverse phase high pressure liquid chromatographic method has been developed for the simultaneous estimation of diclofenac sodium and rabeprazole sodium from pharmaceutical formulations. The method was developed using a HiQ SiL C18 (250 mm × 4.6 mm i.d.) column with a mobile phase consisting of methanol:water, (80:20 v/v), at a flow rate of 1.25 mL min−1. Detection was carried out at 284 nm. Indapamide was used as an internal standard. The developed method was validated for linearity, accuracy, precision, limit of detection and limit of quantitation. The proposed method can be used for the estimation of these drugs in combined dosage forms.

  相似文献   

10.
Two sensitive and selective stability-indicating methods were developed for the determination of the antibiotic cefpirome sulfate in bulk powder, pharmaceutical formulation and in presence of its acid, alkaline, photo- and oxidative degradation products. Method A was based on HPLC separation of cefpirome sulfate in the presence of its degradation products on a reversed phase column C18, 250 × 4.6 mm, 5-μm particle size and mobile phase consisting of 0.1 M disodium hydrogen phosphate dihydrate pH 3.9 adjusted with phosphoric acid–acetonitrile (85:15, v/v). Quantitation was achieved with UV detection at 270 nm. The linear calibration curve was in the range 5.0–50.0 μg mL?1. Method B was based on reversed phase TLC separation of the cited drug in the presence of its degradation products followed by densitometric measurement of the intact drug at 270 nm. The separation was carried out using disodium hydrogen phosphate dihydrate 2.0 g %w/v, at pH 3.5 adjusted with phosphoric acid–acetone (15:10, v/v) as a developing system. The calibration curve was in the range of 1.0–10.0 μg/spot. The HPLC method was used to study the kinetic of cefpirome sulfate acid degradation. The results obtained were statistically analyzed and compared with those obtained by applying the official Japanese method.  相似文献   

11.

The first simultaneous quantification of neomycin and bacitracin using liquid chromatography evaporative light scattering detection as an alternative to MS detection and pre-/post-column derivatisation, respectively, was the aim of this study. The developed method was validated for two strength of neomycin and one strength of bacitracin in sterile pharmaceutical formulation and is a fast and efficient tool for content uniformity tests in quality control. With this method the separation of neomycin from sulfate and the base line separation of the four major components of bacitracin (bacitracin A, B1, B2 and B3) was achieved. These four components are responsible for 96% of the microbiological activity. A Phenomenex Synergi POLAR analytical column (250 mm × 4.6 mm, 4 μm I.D.) in combination with 0.5% perfluoropropionic acid and acetonitrile in gradient mode, the peaks of interest could be separated with high efficiency within 14 min. The calibration was performed using a second order regression with an R 2 = 0.9999 for neomycin (B and C) sulfate and R 2 = 0.9996 for bacitracin A, B1, B2 and B3. The results of the accuracy evaluation were 99.2 and 99.7%, respectively, for neomycin and 100.8% for bacitracin. Injection precision results are 0.4–1.5 RSD% recorded for six injections. The established method has a high potential for routine high-throughput analyses in the pharmaceutical industry.

  相似文献   

12.
Li  Fajie  Zhang  Haiying  Li  Yan  Yu  Yingjia  Chen  Yile  Xie  Meifen  Duan  Gengli 《Chromatographia》2012,75(3-4):187-191

A rapid and accurate size exclusion chromatography method for the simultaneous identification and quantification of dextran 20 and sucrose with optical activity in the lyophilized thrombin powder was developed and validated. The assay was conducted on a Hitachi model D-2000 Elite HPLC system with a TOSOH TSKgel G3000 PWxl column (30 cm × 7.8 mm, 7 μm particle size) and an Alltech 3300 evaporative light scattering detector (ELSD). The mobile phase was acetonitrile–water (46:54, v/v) mixture delivered at a flow rate of 0.7 mL min−1 at 25 °C. The ELSD was operated at a nebulizer-gas flow rate of 2.0 L min−1 and drift tube temperature of 90 °C, and the gain was set at one. Afterward, method validation system for the size exclusion chromatography analysis was developed. The linear range was 0.1–1.6 and 0.1–1.0 g L−1 for dextran 20 and sucrose, respectively, and the detection limits were <0.02 g L−1 for dextran 20 and <0.015 g L−1 for sucrose. Inter-day and intra-day variabilities showed that RSD ranged from 0.27 to 4.20%. Recovery validation showed that average recovery was between 96.00 and 103.98%. The developed analytical procedure was successfully applied to determine the contents of dextran 20 and sucrose in the lyophilized thrombin powder.

  相似文献   

13.
《Analytical letters》2012,45(2):328-339
A new method for nimesulide was developed using ion-pair reversed phase liquid chromatography and tetrabutylammonium hydrogen sulfate as the ion-pairing reagent. The influence of the ion pair forming reagent concentration, pH, and mobile phase composition on the retention time of nimesulide were studied. The optimum experimental conditions included a C18 column, a mobile phase of a 50/50 (v/v) mixture of acetonitrile and 15 mM phosphate buffer (pH 8.00) containing 6 mM tetrabutylammonium hydrogen sulfate, 25°C, isocratic elution, a flow rate of 1 mL/min, a run time of 10 minutes, and photodiode array detection at 404 nm. From the analysis of the results, the mechanism for the separation of nimesulide was also established. The retention time for nimesulide was 4.76 ± 0.05 min. The method was linear between concentrations of 9 µg/mL to 64 µg/mL, with limits of detection and quantification of 1.111 µg/mL and 3.390 µg/mL, respectively. The method is simple, rapid, accurate, and precise, and successfully applied for the determination of nimesulide in pharmaceutical products.  相似文献   

14.
A GC–MS method for the simultaneous determination of two process related toxic impurities viz. 2-(chloromethyl)-3,4-dimethoxypyridine hydrochloride (CDP) and dimethyl sulfate (DMS) and RP-LC for the routine determination of CDP in pantoprazole sodium (PPS) are presented. In GC–MS, a temperature gradient program was performed on a capillary DB-624 column (60 m × 0.32 mm × 1.8 μm). LC analysis of CDP was done on a Novaflex C18 (250 × 4.6 mm, 5 μm) column using mobile phase containing buffer (0.02 M potassium dihydrogen phosphate and 0.0025 M di potassium hydrogen phosphate) and acetonitrile in 46:54 v/v ratio. The flow rate was 1.0 mL min?1 and the elution was monitored at 220 nm. Both methods were validated as per International Conference on Harmonization (ICH) guidelines. GC–MS is able to quantitate up to 3.0 ppm of CDP and DMS whereas with RP-LC up to 9.0 ppm of CDP could be quantitated.  相似文献   

15.
Sun  Hanwen  Wang  Lixin  Liu  Na  Qiao  Fengxia  Liang  Shuxuan 《Chromatographia》2009,70(11):1685-1689

Solid-phase extraction (SPE) and reversed-phase liquid chromatography (RP-LC) have been used for simple, sensitive simultaneous analysis of cyromazine and melamine residues in liquid milk and eggs. The conditions used for SPE and LC were investigated and optimized. A combined cation-exchange–reversed-phase cartridge was used for clean-up, and an ODS (C18) column (150 mm × 4.6 mm i.d., 5-μm particles) with 62:38 (v/v) 5 mm sodium lauryl sulfate (pH 3.4)–acetonitrile as mobile phase was used for RP-LC. Under the optimum conditions the method limit of detection (LOD) for both cyromazine and melamine was 6.2 μg kg−1 for liquid milk samples, and 11.5 μg kg−1 for egg samples. Average recovery of cyromazine and melamine from milk samples was 90.3%, RSD 4.6–5.6%, and 99.6%, RSD 3.2–4.7%, respectively. Average recovery of cyromazine and melamine from egg samples was 85.3%, RSD 1.0–4.7%, and 89.6%, RSD 3.1–5.0%, respectively. The method enables detection of melamine and cyromazine at levels as low as 20.7 μg kg−1 in liquid milk and 38.3 μg kg−1 in egg.

  相似文献   

16.
A simple and selective high‐performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α‐ethynyl estradiol) in environmental matrices. For feces samples, solid–liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid‐phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed‐phase C18 column gradient‐eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10?2 (estrone), 4.11 × 10?4 (estradiol), 5.2 × 10?3 (estriol) and 7.18 × 10?3 μg/L (17α‐ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2–105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area.  相似文献   

17.
A reversed-phase liquid chromatography (RP-LC) method was validated for the determination of rupatadine in pharmaceutical dosage forms. The LC method was carried out on a Gemini C18 column (150 mm × 4.6 mm I.D.), maintained at 30 °C. The mobile phase consisted of ammonium acetate buffer (pH 3.0; 0.01 M) with 0.05% of 1-heptanesulfonic acid–acetonitrile (71.5:28.5, v/v), run at a flow rate of 1.0 mL min?1 and using photodiode array (PDA) detection at 242 nm. The chromatographic separation was obtained with retention time of 5.15 min, and was linear in the range of 0.5–400 μg mL?1 (r = 0.9999). The specificity and stability-indicating capability of the method was proven through the degradation studies and showing also, that there was no interference of the excipients. The accuracy was 100.39% with bias lower than 0.58%. The limits of detection and quantitation were 0.01 and 0.5 μg mL?1, respectively. Moreover, method validation demonstrated acceptable results for precision, sensitivity and robustness. The proposed method was applied for the analysis of pharmaceutical dosage forms assuring the therapeutic efficacy.  相似文献   

18.

Bosentan monohydrate (4-tert-butyl-N-[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl) pyrimidin-4-yl]benzene-1-sulfonamide monohydrate) is a dual endothelin receptor antagonist (ERA) applied in the treatment of pulmonary arterial hypertension. To achieve effective process control of the bosentan monohydrate synthesis, it was necessary to develop a selective and not highly time-consuming method for ultra-high performance liquid chromatography (UHPLC). The method is characterized by adequate sensitivity, reproducibility and selectivity for the determination of bosentan monohydrate and related compounds from all synthetic stages. The UHPLC separation was carried out by reversed phase chromatography on the Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 µm) with a mobile phase composed of solvent A (0.1 %, v/v, acetic acid in water) and solvent B (methanol), in the gradient mode at the flow rate of 0.4 mL min−1. Limits of detection and quantification for the compounds were ≤0.1 µg mL−1 and 0.3 µg mL−1, respectively. The linearity for all related compounds was investigated as in the range for the active pharmaceutical ingredient (API) and as in the range for the in-process control. The developed method was validated according to the current guidelines, proving the suitability of the method for its intended purpose.

  相似文献   

19.
Bari  P. D.  Rote  A. R. 《Chromatographia》2009,69(11):1469-1472

Two new, rapid, precise, accurate and specific chromatographic methods were described for the simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combined tablet dosage forms. The first method was based on reversed phase liquid chromatography using an Eurosphere 100 RP C18 column (250 × 4.6 mm ID, 5 μm). The mobile phase was methanol–0.05% o-phosphoric acid (60:40 v/v) at a flow rate of 1.0 mL min−1. Commercially available tablets and laboratory mixtures containing both drugs were assayed and detected using a UV detector at 270 nm. The second method involved silica gel 60 F254 high performance thin layer chromatography and densitometric detection at 254 nm using acetonitrile–ethyl acetate–glacial acid (7:3:0.4 v/v/v) as the mobile phase. Calibration curves ranged between 200–600 and 125–375 ng spot−1 for olmesartan and hydrochlorothiazide, respectively.

  相似文献   

20.
Hesham Salem 《Chromatographia》2010,72(3-4):327-330
A simple, selective, sensitive, precise, simultaneous liquid chromatographic analysis of capsules containing thioctic acid, benfotiamine and cyanocobalamin was described. Good chromatographic separation was achieved using a Zorbax C18 (4.6 cm × 250 mm, 5 μm) and a mobile phase consisting of acetonitrile–phosphate buffer pH 3.5 (15:85, v/v) at a flow rate of 0.9 mL min?1. The ultraviolet detector was set a wavelength of 280 nm. Thioctic acid, benfotiamine and cyanocobalamin were eluted at 2.869, 3.752 and 13.689 min, respectively. The linear ranges for thioctic acid, benfotiamine and cyanocobalamin were 30–180, 4–24 and 0.025–0.150 μg mL?1, respectively. The recoveries of thioctic acid, benfotiamine and cyanocobalamine in pharmaceutical preparation were all greater than 98% and their relative standard deviations were less than 2.0%. The limits of detection were 2.57, 0.19 and 0.003 μg mL?1 for thioctic acid, benfotiamine and cyanocobalamin, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号