共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemically reasonable models of PR3 (R = Me, Et, iPr, and tBu) were constructed to apply the post Hartree-Fock method to large transition metal complexes. In this model, R is replaced by the H atom including the frontier orbital consistent quantum capping potential (FOC-QCP) which reproduces the frontier orbital energy of PR3. The steric effect is incorporated by the new procedure named steric repulsion correction (SRC). To examine the performance of this FOC-QCP method with the SRC, the activation barriers and reaction energies of the reductive elimination reactions of C2H6 and H2 from M(R1)2(PR2(3))2 (M = Ni, Pd, or Pt; R1 = Me for R2 = Me, Et, or iPr, or R1 = H for R2 = tBu) were evaluated with the DFT[B3PW91], MP4(SDQ), and CCSD(T) methods. The FOC-QCP method reproduced well the DFT[B3PW91]- and MP4(SDQ)-calculated energy changes of the real complexes with PMe3. For more bulky phosphine, the SRC is important to present correct energy change, in which the MP2 method presents reliable steric repulsion correction like the CCSD(T) method because the systems calculated in the SRC do not include a transition metal element. The monomerization energy of [RhCl(PiPr3)2]2 and the coordination energies of CO, H2, N2, and C2H4 with [RhCl(PiPr3)2]2 were theoretically calculated by the CCSD(T) method combined with the FOC-QCP and the SRC. The CCSD(T)-calculated energies agree well with the experimental ones, indicating the excellent performance of the combination of the FOC-QCP with the SRC. On the other hand, the DFT[B3PW91]-calculated energies of the real complexes considerably deviate from the experimental ones. 相似文献
2.
3.
The first transition-metal (Rh(I), Mo(VI), Ni(II)) complexes of S[double bond, length as m-dash]P(NHBu(t))(3) have been synthesized via metathetical reactions of mono-lithiated and [Rh(CO)(2)Cl](2), (Bu(t)N)(2)MoCl(2)(dme) and NiBr(2)(dme). Surprisingly in the molecular structure of the Ni(II)-complex both hard-soft (N,S) and hard-hard (N,N[prime or minute]) chelation modes of are realized. 相似文献
4.
Threshold collision-induced dissociation of M(+)(adenine) with xenon is studied using guided ion beam mass spectrometry. M(+) includes all 10 first-row transition metal ions: Sc(+), Ti(+), V(+), Cr(+), Mn(+), Fe(+), Co(+), Ni(+), Cu(+), and Zn(+). For the systems involving the late metal ions, Cr(+) through Cu(+), the primary product corresponds to endothermic loss of the intact adenine molecule, whereas for Zn(+), this process occurs but to form Zn + adenine(+). For the complexes to the early metal ions, Sc(+), Ti(+), and V(+), intact ligand loss competes with endothermic elimination of purine and of HCN to form MNH(+) and M(+)(C(4)H(4)N(4)), respectively, as the primary ionic products. For Sc(+), loss of ammonia is also a prominent process at low energies. Several minor channels corresponding to formation of M(+)(C(x)H(x)N(x)), x = 1-3, are also observed for these three systems at elevated energies. The energy-dependent collision-induced dissociation cross sections for M(+)(adenine), where M(+) = V(+) through Zn(+), are modeled to yield thresholds that are directly related to 0 and 298 K bond dissociation energies for M(+)-adenine after accounting for the effects of multiple ion-molecule collisions, kinetic and internal energy distributions of the reactants, and dissociation lifetimes. The measured bond energies are compared to those previously studied for simple nitrogen donor ligands, NH(3) and pyrimidine, and to results for alkali metal cations bound to adenine. Trends in these results and theoretical calculations on Cu(+)(adenine) suggest distinct differences in the binding site propensities of adenine to the alkali vs transition metal ions, a consequence of s-dsigma hybridization on the latter. 相似文献
5.
In the present paper, we describe the first structural characterization of cymantrenyl(dihalo)borane and report on its use for the synthesis of novel cymantrenylboryl complexes. 相似文献
6.
Chatterton NP Goodgame DM Grachvogel DA Hussain I White AJ Williams DJ 《Inorganic chemistry》2001,40(2):312-317
An investigation into the anion dependence of the network-forming ability of metal complexes of hexamethylenebis(acetamide), CH3CONH(CH2)6NHCOCH3 (HMBA), has resulted in the X-ray characterization of the compounds [Co(HMBA)3][Co(NCS)4], 1, [Nd(HMBA)3][Nd(NO3)6].2CHCl3, 2, [Co(HMBA)3][HgCl4], 3, and [Mn(HMBA)3][HgBr4].3CHCl3, 4. The structures of compounds 1, 3, and 4 each comprise cationic frameworks formed by the bridging action of HMBA ligands binding octahedrally to the cobalt or manganese centers and, in the cases of 3 and 4, the formation of tetrahedral HgX4(2-) anions by transfer of the respective halide ions from Co or Mn to Hg. Complete anion (NO3-) transfer between Nd centers is also a key factor in the structure of 2, which forms a cationic 3-D network of HMBA-bridged octahedrally coordinated Nd centers with occluded [Nd(NO3)6]3- anions. These types of inter-metal-anion transfer, with consequent complex counteranion formation, appear to facilitate the network-forming ability of the metal-HMBA cationic arrays. 相似文献
7.
Siwei Bi Yanyun Zhao Xiaojian Kong Qingming Xie 《Journal of organometallic chemistry》2008,693(4):639-645
The mechanistic study on the ring-opening of alkoxy-bridged bis(silylene) transition-metal complexes toward MeOH is performed by using density functional theory. Four steps are predicted to be involved in the reaction, formation of hydrogen bonding between R and a MeOH, ring-opening of the Ru-Si1-O1-Si2 four-membered ring, formation of the six-membered ring, and the hydroxyl hydrogen migration to the metal center. It is found that the reaction is favorable thermodynamically and the hydroxyl hydrogen migration is the rate-determining step. Systematic variations of the structural parameters involved in the reaction mechanism are revealed, which revealed the relationship of the bond strength among Ru-Si, Si-O and O-H bonds. 相似文献
8.
9.
以四氨基铜(锌)酞菁为四胺单体, 与4,4'-二苯醚二胺(4,4'-ODA)和二苯醚四酸酐(ODPA)进行共聚, 合成了聚(金属酞菁)酰亚胺. 由于金属酞菁的引入, 聚(铜酞菁)酰亚胺和聚(锌酞菁)酰亚胺的介电常数均高于传统聚酰亚胺(PI). 以聚(铜酞菁)酰亚胺为基体, 采用溶液共混的方法, 制备了一系列碳纳米管/聚(铜酞菁)酰亚胺复合材料, 碳纳米管较为均匀地分散在聚合物基体中. 复合材料具有良好的介电性能, 掺杂碳纳米管质量分数为20%的复合材料的介电常数达到200, 介电损耗为2.25. 相似文献
10.
Magnetization and electronic Raman data are presented for salts of the type Cs[Ga:Ti](SO(4))(2) x 12H(2)O, which enable a very precise definition of the electronic structure of the [Ti(OH(2))(6)](3+) cation. The magnetization data exhibit a spectacular deviation from Brillouin behavior, with the magnetic moment highly dependent on the strength of the applied field at a given ratio of B/T. This arises from unprecedented higher-order contributions to the magnetization, and these measurements afford the determination of the ground-state Zeeman coefficients to third-order. The anomalous magnetic behavior is a manifestation of Jahn-Teller coupling, giving rise to low-lying vibronic states, which mix into the ground state through the magnetic field. Electronic Raman measurements of the 1%-titanium(III)-doped sample identify the first vibronic excitation at approximately 18 cm(-1), which betokens a substantial quenching of spin-orbit coupling by the vibronic interaction. The ground-state Zeeman coefficients are strongly dependent on the concentration of titanium(III) in the crystals, and this can be modeled as a function of one parameter, representing the degree of strain induced by the cooperative Jahn-Teller effect. This study clearly demonstrates the importance that the Jahn-Teller effect can have in governing the magnetic properties of transition metal complexes with orbital triplet ground terms. 相似文献
11.
12.
13.
Summary New ternary complexes of first-row transition metal ions of composition [M(salox)(acac)] [where M=VOIV, MnII, CoII, CuII and ZnII, acacH=acetylacetone, saloxH=salicylaldoxime] and their bis-pyridine adducts have been prepared. Molar conductivity measurements indicate that the complexes are non-electrolytes, while magnetic and electronic spectral studies show an essentially octahedral stereochemistry except for the nickel(II) complex which exhibits a square planar-octahedral equilibrium. The e.s.r. spectra show that the complexes are monomeric in CHCl3 solution. 相似文献
14.
Pedrido R Romero MJ Bermejo MR González-Noya AM Maneiro M Rodríguez MJ Zaragoza G 《Dalton transactions (Cambridge, England : 2003)》2006,(44):5304-5314
The influence of the metal size in the nuclearity of the complexes derived from the hydrazone ligand 2,6-bis(1-salicyloylhydrazonoethyl)pyridine [H(4)daps] has been investigated. We have synthesised a series of new complexes [M(H(x)daps)] x yH(2)O, (x = 2,3; y = 0-3) with M = Ag (1), Cd (2), Al (3), Sn (4) and Pb (6), using an electrochemical procedure. The crystal and molecular structures have been determined for the mononuclear complexes [Sn(H(2)daps)(H(2)O)(2)] x 4H(2)O (5) and [Pb(H(2)daps)(CN)][Et(4)N] (7). Complex is the first neutral Sn(II) complex derived from a pentadentate hydrazone Schiff base ligand. Complex shows the lead coordinated to the hydrazone donor set and a cyanide ligand, being the first reported complex with the lead atom coordinated to a monodentate cyanide group. Additionally, we have synthesised the lead complex using chemical conditions, in the presence of sodium cyanide which allowed us to isolate the neutral complex [Pb(H(2)daps)] (8). Evaporation of these mother liquors led the novel compound [Pb(Hdaphs)(CH(3)COO)] (9). Complex 9 shows the initial ligand hydrolysed in one of the imine bonds giving rise to a new tetradentate ligand [H(2)daphs] coordinated to the lead atom and a bidentate acetate group. Moreover, the solution behaviour of the complexes has been investigated by (1)H, (113)Cd, (117)Sn and (207)Pb NMR techniques. In particular multinuclear NMR has provided new useful data to correlate factors such as oxidation state, coordination number and nature of the kernel donor atoms due to the new coordination found in complexes 5 and 7. The comparative study of the structures of the complexes derived from this pentadentate [N(3)O(2)] hydrazone ligand let us to conclude that the metal size is a key factor to control the nuclearity of the complexes derived from the ligand [H(4)daps]. 相似文献
15.
Jensen MP Payeras AM Fiedler AT Costas M Kaizer J Stubna A Münck E Que L 《Inorganic chemistry》2007,46(7):2398-2408
Low-spin mononuclear (alkylperoxo)iron(III) complexes decompose by peroxide O-O bond homolysis to form iron(IV) species. We examined the kinetics of previously reported homolysis reactions for (alkylperoxo)iron(III) intermediates supported by TPA (tris(2-pyridylmethyl)amine) in CH3CN solution and promoted by pyridine N-oxide, and by BPMCN (N,N-bis(2-pyridylmethyl)-N,N-dimethyl-trans-1,2-diaminocyclohexane) in its cis-beta configuration in CH3CN and CH2Cl2, as well as for the previously unreported chemistry of TPA and 5-Me3TPA intermediates in acetone. Each of these reactions forms an oxoiron(IV) complex, except for the beta-BPMCN reaction in CH2Cl2 that yields a novel (hydroxo)(alkylperoxo)iron(IV) product. Temperature-dependent rate measurements suggest a common reaction trajectory for each of these reactions and verify previous theoretical estimates of a ca. 60 kJ/mol enthalpic barrier to homolysis. However, both the tetradentate supporting ligand and exogenous ligands in the sixth octahedral coordination site significantly perturb the homolyses, such that observed rates can vary over 2 orders of magnitude at a given temperature. This is manifested as a compensation effect in which increasing activation enthalpy is offset by increasingly favorable activation entropy. Moreover, the applied kinetic model is consistent with geometric isomerism in the low-spin (alkylperoxo)iron(III) intermediates, wherein the alkylperoxo ligand is coordinated in either of the inequivalent cis sites afforded by the nonheme ligands. 相似文献
16.
Yu. G. Gol'tsov L. A. Matkovskaya V. G. Voloshinets V. G. Il'in 《Theoretical and Experimental Chemistry》1995,30(5):254-258
Changing the cation composition (Na+ to K+, NH4
+ Cs+) of faujasite with hexacyanoferrate(II) encapsulated in the large pores causes distortion of the octahedral symmetry of the complex.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 30, No. 5, pp. 293–297, September–October, 1994. 相似文献
17.
P Chaudhuri C N Verani E Bill E Bothe T Weyhermüller K Wieghardt 《Journal of the American Chemical Society》2001,123(10):2213-2223
The ligand 2-anilino-4,6-di-tert-butylphenol and its 2-(3,5-dichloroanilino)-4,6-di-tert-butylphenol analogue react in CH(3)CN or CH(3)OH solutions with divalent transition metal ions in the presence of air and triethylamine. Depending on the metal:ligand ratio (1:1, 1:2, or 1:3) and the presence (or absence) of the cyclic amine 1,4-dimethyl-1,4,7-triazacyclononane (dmtacn), the following complexes have been isolated as crystalline solids: [Co(III)(L(ISQ))(3)] (1); [Cu(II)(dmtacn)(L(ISQ))]PF(6) (2); [Cu(II)(L(ISQ))(2)] (3); [Ni(II)(L(ISQ))(2)] (4a); [Ni(II)((Cl)L(ISQ))(2)] (4b); [Pd(II)(L(ISQ))(2)] (5). (L(ISQ))(-) represents the monoanionic o-iminobenzosemiquinonate radical (S(rad) = (1)/(2)). Compounds 1-5 have been characterized by single-crystal X-ray crystallography at 100(2) K. For all complexes it is unambiguously established that the O,N-coordinated o-iminobenzosemiquinonato(1-) ligand is present. Complexes 3, 4b, and 5 are square planar molecules which possess an S(t) = (1)/(2), 0, and 0 ground state, respectively, as was established by (1)H NMR and EPR spectroscopies and variable-temperature magnetic susceptibility measurements. Complex 2 possesses an S(t) = 1 ground state which is attained via strong intramolecular ferromagnetic coupling (J = +195 cm(-1)) between the d(x)2-(y)2 magnetic orbital of the Cu(II) ion and the pi-orbital of the ligand radical. Complex 1 contains three mutually orthogonal (L(ISQ))(-*) ligands and has an S(t) = (3)/(2) ground state. It is shown that the electronic structure of 4a and 5 is adequately described as singlet diradical containing a divalent, diamagnetic d(8) configurated central metal ion and two strongly antiferromagnetically coupled (L(ISQ))(-) radical ligands. It is concluded that the same electronic structure prevails in the classic bis(o-diiminobenzosemiquinonato)- and bis(o-benzosemiquinonato)metal complexes of Ni(II), Pd(II), and Pt(II). The electrochemistry of all complexes has been investigated in detail. For 3, 4a, and 5 a series of reversible one-electron-transfer waves leads to the formation of the anions and cations [M(L)(2)](2-),(1-),(1+),(2+) which have been characterized spectroelectrochemically. All redox processes are shown to be ligand-based. 相似文献
18.
Shimazaki Y Arai N Dunn TJ Yajima T Tani F Ramogida CF Storr T 《Dalton transactions (Cambridge, England : 2003)》2011,40(11):2469-2479
The neutral and one-electron oxidized group 10 metal, Ni(II), Pd(II) and Pt(II), six-membered chelate Salpn (Salpn = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,3-propanediamine) complexes have been investigated and compared to the five-membered chelate Salen (N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethanediamine) and Salcn (N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) complexes. Reaction of the Salpn complexes with 1 equivalent of AgSbF(6) affords the oxidized complexes which exist as ligand radical species in solution and in the solid state. The solid state structures of the oxidized complexes have been determined by X-ray crystal structure analysis. While the Ni and Pt analogues exhibit an essentially symmetric coordination sphere contraction upon oxidation, the oxidized Pd derivative exhibits an asymmetric metal binding environment demonstrating at least partial ligand radical localization. In comparison to the oxidized Salen and Salcn complexes, the propyl backbone of the Salpn complexes leads to a larger deviation from a planar geometry in the solid state. The electronic structure of the oxidized Salpn complexes was further probed by UV-vis-NIR measurements, electrochemistry, EPR spectroscopy, and theoretical calculations. The intense NIR band for the one-electron oxidized Salpn complexes shifts to lower energy in comparison to the 5-membered chelate analogues, which is attributed to lower metal d(xz) character in the β-LUMO for the Salpn series. The reactivity of the one-electron oxidized Salpn complexes with exogenous ligands was also studied. In the presence of pyridine, the oxidized Ni analogue exhibits a shift in the locus of oxidation to a Ni(III) species. The oxidized PtSalpn complex rapidly decomposes in the presence of pyridine, even at low temperature. Interestingly, electronic and EPR spectroscopy suggests that the addition of pyridine to the oxidized Pd analogue results in initial dissociation of the phenoxyl radical ligand, likely due to the increased flexibility of the propyl backbone. 相似文献
19.
《Journal of Coordination Chemistry》2012,65(22):3687-3692
Copper and cobalt complexes derived from 3-(N-phenyl)-thiourea-pentanone-2 were characterized by elemental, XRD, FTIR, UV–Vis, SEM and 1H NMR spectroanalytical studies. The X-ray diffraction studies indicate that 3-(N-phenyl)-thiourea-pentanone-2 and complexes with copper and cobalt are crystalline in nature with simple cubic lattice structure. IR spectroscopic data were used to assign characteristic vibrational frequencies of groups present in these compounds. Scanning electron micrograms were used to assign morphology and particle size. 相似文献
20.
Synthesis and some first-row transition-metal complexes of the 1,2,4-triazole-based Bis(terdentate) ligands TsPMAT and PMAT 总被引:1,自引:0,他引:1
Klingele MH Moubaraki B Murray KS Brooker S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(23):6962-6973
The employment of a strategy based on nucleophilic substitution, rather than Schiff base condensation, for the preparation of 1,2,4-triazole-based ligands has been investigated and has led to the synthesis of two new ligands, 4-amino-3,5-bis{[N-(2-pyridylmethyl)-N-(4-toluenesulfonyl)amino]methyl}-4H-1,2,4-triazole (TsPMAT, 14) and 4-amino-3,5-bis{[(2-pyridylmethyl)amino]methyl}-4H-1,2,4-triazole (PMAT, 15). These are the first examples of bis(terdentate) ligands incorporating the 1,2,4-triazole unit. TsPMAT (14) forms a dinuclear 2:2 complex with Co(BF4)2.6 H2O even when reacted in a metal-to-ligand molar ratio of 2:1. Similarly, the reaction of PMAT (15) with Mn(ClO4)2.6H2O or M(BF4)2.6 H2O (M=Fe, Co, Ni, Zn) in a ligand-to-metal molar ratio of 1:1 has afforded a series of complexes with the general formula [M(II) (2)(PMAT)2]X4. The metal centres in these complexes of TsPMAT (14) and PMAT (15) are encapsulated by two ligand molecules and doubly bridged by the N2 units of the 1,2,4-triazole moieties, which gives rise to N6 coordination spheres that are strongly distorted from octahedral, as evidenced by the X-ray crystal structure analyses of [Co(II) (2)(TsPMAT)(2)](BF(4))(4)6 MeCN (246 MeCN) and [Fe(II) 2(PMAT)2](BF4)4DMF (27DMF). Studies of the magnetic properties of [Co(II) 2(TsPMAT)2](BF4)4.4 H2O (244 H2O), [Mn(II) 2(PMAT)2](ClO4)4 (26), and [Co(II) 2(PMAT)2](BF4)4 (28) have revealed weak antiferromagnetic coupling (J=-3.3, -0.16, and -2.4 cm(-1), respectively) between the two metal centres in these complexes. 相似文献