首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scope of the present work is to reconcile electron momentum spectroscopy with elementary thermodynamics, and refute conclusions drawn by Saha et al. in J. Chem. Phys. 123, 124315 (2005) regarding fingerprints of the gauche conformational isomer of 1,3-butadiene in electron momentum distributions that were experimentally inferred from gas phase (e,2e) measurements on this compound [M. J. Brunger et al., J. Chem. Phys. 108, 1859 (1998)]. Our analysis is based on thorough calculations of one-electron and shake-up ionization spectra employing one-particle Green's function theory along with the benchmark third-order algebraic diagrammatic construction [ADC(3)] scheme. Accurate spherically averaged electron momentum distributions are correspondingly computed from the related Dyson orbitals. The ionization spectra and Dyson orbital momentum distributions that were computed for the trans-conformer of 1,3-butadiene alone are amply sufficient to quantitatively unravel the shape of all available experimental (e,2e) electron momentum distributions. A comparison of theoretical ADC(3) spectra for the s-trans and gauche energy minima with inner- and outer-valence high-resolution photoelectron measurements employing a synchrotron radiation beam [D. M. P. Holland et al., J. Phys. B 29, 3091 (1996)] demonstrates that the gauche structure is incompatible with ionization experiments in high-vacuum conditions and at standard temperatures. On the other hand, outer-valence Green's function calculations on the s-trans energy minimum form and approaching basis set completeness provide highly quantitative insights, within approximately 0.2 eV accuracy, into the available experimental one-electron ionization energies. At last, analysis of the angular dependence of relative (e,2e) ionization intensities nicely confirms the presence of one rather intense pi(-2) pi(*+1) satellite at approximately 13.1 eV in the ionization spectrum of the s-trans conformer.  相似文献   

2.
A complete study of the valence electronic structure and related electronic excitation properties of cyclopentene in its C(s) ground state geometry is presented. Ionization spectra obtained from this compound by means of photoelectron spectroscopy (He I and He II) and electron momentum spectroscopy have been analyzed in details up to electron binding energies of 30 eV using one-particle Green's function (1p-GF) theory along with the outer-valence (OVGF) and the third-order algebraic diagrammatic construction [ADC(3)] schemes. The employed geometries derive from DFT/B3LYP calculations in conjunction with the aug-cc-pVTZ basis set, and closely approach the structures inferred from experiments employing microwave spectroscopy or electron diffraction in the gas phase. The 1p-GF/ADC(3) calculations indicate that the orbital picture of ionization breaks down at electron binding energies larger than approximately 17 eV in the inner-valence region, and that the outer-valence 7a' orbital is also subject to a significant dispersion of the ionization intensity over shake-up states. This study confirms further the rule that OVGF pole strengths smaller than 0.85 foretell a breakdown of the orbital picture of ionization at the ADC(3) level. Spherically averaged (e, 2e) electron momentum distributions at an electron impact energy of 1200 eV that were experimentally inferred from an angular analysis of EMS intensities have been interpreted by comparison with accurate simulations employing ADC(3) Dyson orbitals. Very significant discrepancies were observed with momentum distributions obtained from several outer-valence ionization bands using standard Kohn-Sham orbitals.  相似文献   

3.
Results of an exhaustive experimental study of the valence electronic structure of thiophene using high resolution electron momentum spectroscopy at impact energies of 1200 and 2400 eV are presented. The measurements were performed using an electron momentum spectrometer of the third generation at Tsinghua University, which enables energy, polar and azimuthal angular resolutions of the order of DeltaE = 0.8 eV, Deltatheta = +/-0.53 degrees and Deltaphi = +/-0.84 degrees . These measurements were interpreted by comparison with Green's function calculations of one-electron and shake-up ionization energies as well as of the related Dyson orbital electron momentum distributions, using the so-called third-order algebraic diagrammatic construction scheme (ADC(3)). Comparison of spherically averaged theoretical electron momentum distributions with experimental results very convincingly confirms the presence of two rather intense pi-2 pi*+1 shake-up lines at electron binding energies of 13.8 and 15.5 eV, with pole strengths equal to 0.18 and 0.13, respectively. Analysis of the electron momentum distributions associated with the two lowest 2A2 (pi3-1) and 2B1 (pi2-1) cationic states provides indirect evidence for a symmetry lowering and nuclear dynamical effects due to vibronic coupling interactions between these two states. ADC(3) Dyson orbital momentum distributions are systematically compared with distributions derived from Kohn-Sham (B3LYP) orbitals, and found to provide most generally superior insights into experiment.  相似文献   

4.
Valence-shell binding energy spectra and momentum distributions of CS2 have been measured using non-coplanar symmetric binary (e,2e) spectroscopy. The present measurements are compared with previously published binding energy spectra calculated using the many body 2ph-TDA Green's function (GF) method and the symmetry-adapted cluster configuration-interaction (SAC CI) method. The measured and the calculated binding energy spectra both show extensive population splittings particularly above 20 eV, confirming a significant breakdown of independent particle ionization picture. A relatively strong-outer valence many-body state at 17.0 eV is shown to be satellite of the (2π0)?1 state, in accord with earlier conclusions of photoelectron studies. Momentum distributions measured at several carefully chosen binding energies are compared with the corresponding molecular orbital momentum distributions calculated using small and extended gaussian basis sets. The good qualitative agreement between momentum distributions measured in the inner-valence region wth theoretical 4σm and 5σg orbital momentum distributions confirms the qualitative predictions of satellite parentages by GF and SAC CI calculations. Momentum and position density contour maps of individual orbitals are used to interpret the shapes and atomic characters of the experimental momentum distributions. Momentum densities of the valence orbitals of CS2 are compared with those of the respective valence isoelectronic species CO2  相似文献   

5.
Intramolecular interactions between fragments of L ‐phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L ‐phenylalanine, benzene and L ‐alanine are studied using density functional theory methods. While fully resolved experimental PES of L ‐phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e1g and 1a2u orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L ‐phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14‐20 eV, rather than outside of this region. This study presents a competent orbital based fragments‐in‐molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D‐PDF technique. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

6.
Binding energy spectra of the valence electrons of the open shell molecule NO have been obtained up to 55 eV at azimuthal angles of 0° and 7° using binary (e, 2e) spectroscopy at an impact energy of 1200 eV. The momentum distribution has been obtained for the least tightly bound (unpaired) electron, removal of which leads to formation of the X 1Σ+ ground state of NO+. Momentum distributions have also been measured at 21.0 and 40.5 eV. The measured momentum distributions are compared with several literature wavefunctions of varying complexity. They are found to be in excellent agreement with those calculated using the natural spin orbital wavefunctions of Kouba and Ohrn.  相似文献   

7.
8.
9.
The conformational equilibrium in 1,4-dimethoxybenzene (1,4-DMB) in benzene solutions has been studied. On the basis of experimental values of the nonlinear dielectric effect (NDE) parameter, electric permittivity and density, determined in this work, and applying the general statistical theory of NDE, the contributions of the syn-anti and syn-syn conformers and the electric dipole moment of the polar syn-syn conformer were calculated. The molecular orbital method (PM3) has also been applied for calculation of the dipole moments and energies of particular conformers. The results of the NDE study and PM3 calculations are consistent and they reveal the existence of two conformers (syn-anti and syn-syn) of comparable energy values, but different values of dipole moments, and the predominance of the polar form (syn-syn) of the mole fraction in benzene. Moreover, the energies of intermolecular interactions have been determined from the concentration dependence of linear and nonlinear polarisability.  相似文献   

10.
The ionization energy spectra and electron momentum distributions of formamide were investigated using the high-resolution electron momentum spectrometer in combination with high level calculations. The observed ionization energy spectra and electron momentum distributions were interpreted using symmetry adapted cluster-configuration interaction theory, outer valence Green function, and DFT-B3LYP methods. The ordering of 10a(') and 2a(") orbitals of formamide was assigned unambiguously by comparing the experimental electron momentum distributions with the corresponding theoretical results, i.e., 10a(') has a lower binding energy. In addition, it was found that the low-frequency wagging vibration of the amino group at room temperature has noticeable effects on the electron momentum distributions. The equilibrium-nuclear-positions-approximation, which was widely used in electron momentum spectroscopy, is not accurate for formamide molecule. The calculations based on the thermal average can evidently improve the agreement with the experimental momentum distributions.  相似文献   

11.
《Chemical physics》1987,113(1):1-18
The complete valence shall binding energy spectrum (10–50 eV) of Cl2 has been determined using electron momentum (binary (e,2e)) spectroscopy. The inner valence region, corresponding to 4σu and 4σg ionization, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects. These measurements are compared with the results of many-body calculations using Green function and CI methods employing unpolarised as well as polarised wavefunctions. Momentum distributions, measured in both the outer and inner valence regions, are compared with calculations using a range of unpolarised and polarised wavefunctions. Computed orbital density maps in momentum and position space for oriented Cl2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions.  相似文献   

12.
Electron-impact double ionization of noble gases is investigated theoretically for the case of high incident energies (5 keV). An ab initio calculation is made including partial correlation in the initial state as well as in the final state. The results of the calculations are compared with those of other theories and with the first available (e, 3e) experimental data on krypton 4p 6.  相似文献   

13.
The conformation of the side-chain attached to N10 of the phenothiazine ring system is investigated by the molecular orbital PCILO method. It is shown that this conformation depends on the folding of the ring along the S-N central axis. The theoretical results are in very satisfactory agreement with the available X-ray crystallographic data on chlorpromazine, thiethylperazine, diethazine and mopazine.
Zusammenfassung Die Konformation der Seitenkette am N10 des Phenothiazinringsystems wird mit der PCILO-Methode untersucht. Es wird gezeigt, daß diese Konformation von der Stellung des Rings entlang der zentralen S-N Achse abhängt. Die theoretischen Ergebnisse stimmen sehr gut mit den vorhandenen kristallographischen Daten von Chlorpromazin, Thiethylperazin, Diethazin und Mipazin überein.

Résumé La conformation de la chaîne latérale partant du N10 du noyau phenothiazinique est étudiée par la méthode PCILO. Les résultats montrent que cette conformation dépend notablement du degré de pliage de la molécule le long de l'axe S-N central. Les prédictions théoriques sont en excellent accord avec les données expérimentales provenant de l'étude cristallographique de la chlorpromazine, la thiethylperazine, la diethazine et la mopazine.
  相似文献   

14.
15.
16.
Tabun (ethyl N,N‐dimethylphosphoramidocyanidate), or GA, is a chemical warfare nerve agent produced during the World War II. The synthesis of its analogs is rather simple; thus, it is a significant threat. Furthermore, experiments with tabun and other nerve agents are greatly limited by the involved life risks and the severe restrictions imposed by the Chemical Weapons Convention. For these reasons, accurate theoretical assignment of fragmentation pathways can be especially important. In this work, we employ the Quantum Chemistry Electron Ionization Mass Spectra method, which combines molecular dynamics, quantum chemistry methods, and stochastic approaches, to accurately investigate the electron ionization/mass spectrometry (EI/MS) fragmentation spectrum and pathways of the tabun molecule. We found that different rearrangement reactions occur including a McLafferty involving the nitrile group. An essential and characteristic pathway for identification of tabun and analogs, a two‐step fragmentation producing the m/z 70 ion, was confirmed. The present results will be also useful to predict EI/MS spectrum and fragmentation pathways of other members of the tabun family, namely, the O‐alkyl/cycloalkyl N,N‐dialkyl (methyl, ethyl, isopropyl, or propyl) phosphoramidocyanidates.  相似文献   

17.
The minimum-energy structures on the torsional potential-energy surface of 1,3-butadiene have been studied quantum mechanically using a range of models including ab initio Hartree-Fock and second-order M?ller-Plesset theories, outer valence Green's function, and density-functional theory with a hybrid functional and statistical average orbital potential model in order to understand the binding-energy (ionization energy) spectra and orbital cross sections observed by experiments. The unique full geometry optimization process locates the s-trans-1,3-butadiene as the global minimum structure and the s-gauche-1,3-butadiene as the local minimum structure. The latter possesses the dihedral angle of the central carbon bond of 32.81 degrees in agreement with the range of 30 degrees-41 degrees obtained by other theoretical models. Ionization energies in the outer valence space of the conformer pair have been obtained using Hartree-Fock, outer valence Green's function, and density-functional (statistical average orbital potentials) models, respectively. The Hartree-Fock results indicate that electron correlation (and orbital relaxation) effects become more significant towards the inner shell. The spectroscopic pole strengths calculated in the Green's function model are in the range of 0.85-0.91, suggesting that the independent particle picture is a good approximation in the present study. The binding energies from the density-functional (statisticaly averaged orbital potential) model are in good agreement with photoelectron spectroscopy, and the simulated Dyson orbitals in momentum space approximated by the density-functional orbitals using plane-wave impulse approximation agree well with those from experimental electron momentum spectroscopy. The coexistence of the conformer pair under the experimental conditions is supported by the approximated experimental binding-energy spectra due to the split conformer orbital energies, as well as the orbital momentum distributions of the mixed conformer pair observed in the orbital cross sections of electron momentum spectroscopy.  相似文献   

18.
The momentum space properties of the ten-electron systems Ne, HF, H2O, NH3 and CH4 as well as those of CH3CH3, CH3NH2, CH3OH and FCH2OH were investigated using localized molecular orbitals (LMO) obtained from ab initio self-consistent-field (SCF) wavefunctions constructed from double zeta quality gaussain basis sets.Compton profiles of various LMO electron pairs (CC, CN, CO, CF; CH, NH, OH, FH bond pairs and C, N, O, F lone pairs) are tabulated. In order to understand the correspondence between the momentum and the coordinate space properties of those electron pairs, the concept of the size and the shape of an LMO electron pair charge distribution has been utilized. The use of the intermediate expectation values of pn is introduced for the purpose of interpreting the momentum space properties.The dependence of molecular property partitioning on different localization schemes and on different basis sets is also studied by using the H2O profile as an example.  相似文献   

19.
The entrance channel leading to the addition reaction between the hydroxyl radical and acetylene has been examined by spectroscopic characterization of the asymmetric CH stretching band of the pi-hydrogen bonded OH-acetylene reactant complex. The infrared action spectrum observed at 3278.6 cm(-1) (origin) consists of seven peaks of various intensities and widths, and is very different from those previously reported for closed-shell HF/HCl-acetylene complexes. The unusual spectrum arises from a partial quenching of the OH orbital angular momentum in the complex, which in turn is caused by a significant splitting of the OH monomer orbital degeneracy into (2)A(') and (2)A(") electronic states. The magnitude of the (2)A(')-(2)A(") splitting as well as the A rotational constant for the OH-acetylene complex are determined from the analysis of this b-type infrared band. The most populated OH product rotational state, j(OH)=9/2, is consistent with intramolecular vibrational energy transfer to the nu2 C triple bonded C stretching mode of the departing acetylene fragment. The lifting of the OH orbital degeneracy and partial quenching of its electronic orbital angular momentum indicate that the electronic changes accompanying the evolution of reactants into products have begun to occur in the reactant complex.  相似文献   

20.
Summary The conformational equilibrium of ethylene glycol (CH2OHCH2OH) has been examined by performing geometry optimizations at the 6-31G*, MP2/6-31G* and 6-31G** levels. Final energies have been calculated at the MP3 level with the optimized geometries. The two most stable conformers are atGg andgGg but it is verified that the inclusion of electronic correlations reduces their energy difference of 0.6 kcal/mol at the HF level to less than 0.2 kcal/mol. The possible coexistence of the two most stable conformers is in agreement with some previous studies of Frei et al. For thetXg conformer a detailed analysis of the intramolecular potential as a function of rotation around the C-C bond is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号