首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of two supramolecular diruthenium complexes, 1 ?CB[7] and 1 ?CB[8] (CB[n]=cucurbit[n]uril), which contain the respective host CB[7] and CB[8], were synthesized and isolated. In the case of host CB[8], the desired supramolecular complex was obtained by utilizing dihydroxynapthalene as a template during the synthesis. The 1H NMR spectra, electrochemistry, and photochemistry of these supramolecular complexes were performed in nonaqueous solution. The results show that both CB[7,8] hosts mainly bind to the linker part in solution in acetonitrile. This binding also lowers the oxidation potential of the ruthenium metal center and hinders the quenching effect by the viologen moiety. It has also been shown that external methylviologen can be included into 1 ?CB[8]. Analysis with NMR spectroscopy, electrochemistry, and photochemistry clearly shows a viologen radical dimer formation between the bound viologen and free methylviologen, thereby showing that the unique abilities of the CB[8] host can be utilized even in nonaqueous solution.  相似文献   

2.
A rotaxane containing a ruthenium bisphenanthroline complex, acting as an axis, and a macrocycle incorporating a 2,2'-bipyridine (bpy) unit, threaded by the axis, has been synthesized. The bisphenanthroline ligand is such that its ruthenium(II) complexes possess a clearly identified axis, making such compounds ideal components of rotaxanes constructed around an octahedral ruthenium(II) center, which serves as a template. The ring is threaded by the axial ruthenium(II) precursor complex, to afford the corresponding pseudorotaxane in moderate yield. The X-ray structure analysis of this compound reveals the threaded nature of the complex. The length of the threaded ring (35 atoms in the periphery) is too short to allow easy threading of the axis through the macrocycle. As a consequence, an isomer is also obtained for which the axial ruthenium complex is attached in an exo fashion. (1)H NMR studies have been carried out, which reveal various conformational equilibria for the pseudorotaxane. Light-induced decoordination of the bpy-containing cyclic fragment was shown to be quantitative and to lead to the free ring and the axial ruthenium(II) complex, regardless of the starting compound (pseudorotaxane or exo isomer). Finally, the real rotaxane could be prepared, although it could not be separated from its exo isomer.  相似文献   

3.
The dinuclear ruthenium complex [(phen)2Ru(tatpp)Ru(phen)2]4+ (P; in which phen is 1,10-phenanthroline and tatpp is 9,11,20,22-tetraaza tetrapyrido[3,2-a:2'3'-c:3',2'-l:2',3']-pentacene) undergoes a photodriven two-electron reduction in aqueous solution, thus storing light energy as chemical potential within its structure. The mechanism of this reduction is strongly influenced by the pH, in that basic conditions favor a sequential process involving two one-electron reductions and neutral or slightly acidic conditions favor a proton-coupled, bielectronic process. In this complex, the central tatpp ligand is the site of electron storage and protonation of the central aza nitrogen atoms in the reduced products is observed as a function of the solution pH. The reduction mechanism and characterization of the rich array of products were determined by using a combination of cyclic and AC voltammetry along with UV-visible reflectance spectroelectrochemistry experiments. Both the reduction and protonation state of P could be followed as a function of pH and potential. From these data, estimates of the various reduced species' pKa values were obtained and the mechanism to form the doubly reduced, doubly protonated complex, [(phen)2Ru(H2tatpp)Ru(phen)2]4+ (H2P) at low pH (< or =7) could be shown to be a two-proton, two-electron process. Importantly, H2P is also formed in the photochemical reaction with sacrificial reducing agents, albeit at reduced yields relative to those at higher pH.  相似文献   

4.
5.
6.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

7.
8.
9.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

10.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

11.
12.
Three ruthenium(II) polypyridine complexes of general formula [Ru(bpy)(3-n)(TTF-dppz)n](PF6)2 (n=1-3, bpy=2,2'-bipyridine), with one, two or three redox-active TTF-dppz (4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine) ligands, were synthesised and fully characterised. Their electrochemical and photophysical properties are reported together with those of the reference compounds [Ru(bpy)3](PF6)2, [Ru(dppz)3](PF6)2 and [Ru(bpy)2(dppz)](PF6)2 and the free TTF-dppz ligand. All three complexes show intraligand charge-transfer (ILCT) fluorescence of the TTF-dppz ligand. Remarkably, the complex with n=1 exhibits luminescence from the Ru(2+)-->dppz metal-to-ligand charge-transfer ((3)MLCT) state, whereas for the other two complexes, a radiationless pathway via electron transfer from a second TTF-dppz ligand quenches the (3)MLCT luminescence. The TTF fragments as electron donors thus induce a ligand-to-ligand charge-separated (LLCS) state of the form TTF-dppz- -Ru(2+)-dppz-TTF(+). The lifetime of this LLCS state is approximately 2.3 micros, which is four orders of magnitude longer than that of 0.4 ns for the ILCT state, because recombination of charges on two different ligands is substantially slower.  相似文献   

13.
trans-[XRu(py)4(NO)]2+(X=Cl,Br)与等物质的量的NaN3在甲醇中反应后生成中间体trans-[XRu(py)4(CH3OH)]+,它再与过量的Na[N(CN)2]或K[C(CN)3]反应后生成单核配合物trans-XRu(py)3L(X=Cl,Br,L=N(CN)2-,C(CN)3-)。单核配合物XRu(py)4L与[X′Ru(py)4(CH3OH)]+进行分子组装,生成了一系列双核钌配合物trans-[X(py)4Ru(μ-L)Ru(py)4X′]+。用等物质的量的NOBF4或(NH4)2[Ce(NO3)6]氧化这些RuRu双核钌配合物,得到了一系列RuRu混合价配合物trans-[X(py)4Ru(μ-L)Ru(py)4X′]2+。N(CN)2-桥联的RuRu混合价配合物在近红外区存在中等强度的吸收,起源于混合价态间的电荷跃迁(Intervalence Charge Transfer,简称为IVCT),且其最大吸收波长随着溶剂极性的改变而发生变化,它们属于Class Ⅱ类型的混合价化合物;而C(CN)3-桥联的RuRu混合价配合物在近红外的吸收要强得多,且溶剂极性的改变对IVCT最大吸收波长基本无影响,它们属于介于价态定域与离域之间的混合价配合物。  相似文献   

14.
15.
The reaction of tetracyanoethylene (TCNE) and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) with Fe(CO)(5) leads to formation of magnetically ordered materials of Fe[TCNE](2) (T(c) = 100 K) and Fe[TCNQ](2) (T(c) = 35 K) composition, respectively. In contrast, the reaction with 1,2-dichloro-5,6-dicyanobenzoquinone (DDQ) leads to a paramagnetic material.  相似文献   

16.
We have investigated the single‐molecule magnets [MnIII2(5‐Brsalen)2(MeOH)2MIII(CN)6]NEt4 (M=Os ( 1 ) and Ru ( 2 ); 5‐Brsalen=N,N′‐ethylenebis(5‐bromosalicylidene)iminate) by frequency‐domain Fourier‐transform terahertz electron paramagnetic resonance (THz‐EPR), inelastic neutron scattering, and superconducting quantum interference device (SQUID) magnetometry. The combination of all three techniques allows for the unambiguous experimental determination of the three‐axis anisotropic magnetic exchange coupling between MnIII and RuIII or OsIII ions, respectively. Analysis by means of a spin‐Hamiltonian parameterization yields excellent agreement with all experimental data. Furthermore, analytical calculations show that the observed exchange anisotropy is due to the bent geometry encountered in both 1 and 2 , whereas a linear geometry would lead to an Ising‐type exchange coupling.  相似文献   

17.
18.
19.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号