首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently f(T) theories based on modifications of teleparallel gravity, where torsion is the geometric object describing gravity instead of curvature, have been proposed to explain the present cosmic accelerating expansion. The field equations are always second order, remarkably simpler than f(R) theories. In analogy to the f(R) theory, we consider here three types of f(T) gravity, and find that all of them can give rise to cosmic acceleration with interesting features, respectively.  相似文献   

2.
In this paper, we reconstruct cosmological models in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We show that the dust fluid reproduces ΛCDM, phantom–non-phantom era and phantom cosmology. Further, we reconstruct different cosmological models, including the Chaplygin gas, and scalar field with some specific forms of f(R,T). Our numerical simulation for the Hubble parameter shows good agreement with the BAO observational data for low redshifts, z<2.  相似文献   

3.
In this paper, we propose two new models in f(T) gravity to realize the crossing of the phantom divide line for the effective equation of state, and we then study the observational constraints on the model parameters. The best fit results suggest that the observations favor a crossing of the phantom divide line.  相似文献   

4.
The implications from the existence of a proper Homothetic Vector Field on the dynamics of vacuum anisotropic models in F(R) gravitational theory are studied. The fact that every Spatially Homogeneous vacuum model is equivalent, formally, with a “flux”-free anisotropic fluid model in standard gravity and the induced power-law form of the functional F(R) due to self-similarity enable us to close the system of equations. We found some new exact anisotropic solutions that arise as fixed points in the associated dynamical system. The non-existence of Kasner-like (Bianchi type I) solutions in proper F(R)-gravity (i.e. \(R\ne 0\)) strengthens the belief that curvature corrections will prevent the shear influence into the past thus permitting an isotropic singularity. We also discuss certain issues regarding the lack of vacuum models of type III, IV, VII\(_{h}\) in comparison with the corresponding results in standard gravity.  相似文献   

5.
In the standard formulation, the f(T) field equations are not invariant under local Lorentz transformations, and thus the theory does not inherit the causal structure of special relativity. Actually, even locally violation of causality can occur in this formulation of f(T) gravity. A locally Lorentz covariant f(T) gravity theory has been devised recently, and this local causality problem seems to have been overcome. The non-locality question, however, is left open. If gravitation is to be described by this covariant f(T) gravity theory there are a number of issues that ought to be examined in its context, including the question as to whether its field equations allow homogeneous Gödel-type solutions, which necessarily leads to violation of causality on non-local scale. Here, to look into the potentialities and difficulties of the covariant f(T) theories, we examine whether they admit Gödel-type solutions. We take a combination of a perfect fluid with electromagnetic plus a scalar field as source, and determine a general Gödel-type solution, which contains special solutions in which the essential parameter of Gödel-type geometries, \(m^2\), defines any class of homogeneous Gödel-type geometries. We show that solutions of the trigonometric and linear classes (\(m^2 < 0\) and \(m=0\)) are permitted only for the combined matter sources with an electromagnetic field matter component. We extended to the context of covariant f(T) gravity a theorem which ensures that any perfect-fluid homogeneous Gödel-type solution defines the same set of Gödel tetrads \(h_A^{~\mu }\) up to a Lorentz transformation. We also showed that the single massless scalar field generates Gödel-type solution with no closed time-like curves. Even though the covariant f(T) gravity restores Lorentz covariance of the field equations and the local validity of the causality principle, the bare existence of the Gödel-type solutions makes apparent that the covariant formulation of f(T) gravity does not preclude non-local violation of causality in the form of closed time-like curves.  相似文献   

6.
In this paper, we consider F(R)=R+f(R) theory instead of Einstein gravity with conformal anomaly and look for its analytical solutions. Depending on the free parameters, one may obtain both uncharged and charged solutions for some classes of F(R) models. Calculation of Kretschmann scalar shows that there is a singularity located at r=0. The geometry of uncharged (charged) solution corresponds to the Schwarzschild (Reissner–Nordström) singularity. Further, we discuss the viability of our models in detail. We show that these models can be stable, depending on their parameters and in different epochs of the universe.  相似文献   

7.
We consider the equations of motion of an anisotropic space-time in f(T) theory, where T is the torsion. New spherically symmetric solutions of black holes and wormholes are obtained with a constant torsion and for the cases for which the radial pressure is proportional to a real constant, to some algebraic functions f(T) and their derivatives f T (T), or vanishes identically.  相似文献   

8.
In this paper, we investigate the Noether symmetries of F(T) cosmology involving matter and dark energy. In this model, the dark energy is represented by a canonical scalar field with a potential. Two special cases for dark energy are considered, including phantom energy and quintessence. We obtain F(T)~T 3/4, and the scalar potential V(?)~? 2 for both models of dark energy and discuss quantum picture of this model. Some astrophysical implications are also discussed.  相似文献   

9.
We develop the reconstruction of the f(T) gravity model according to the holographic dark energy. T is the torsion scalar and its initial value from the teleparallel gravity is imposed for fitting the initial value of the function f(T). The evolutionary nature of the holographic dark energy is essentially based on two important parameters, Ω V  and ω V , respectively, the dimensionless dark energy and the parameter of the equation of state, related to the holographic dark energy. The result shows a polynomial function for f(T), and we also observe that, when Ω V →1 at the future time, ω V may cross −1 for some values of the input parameter b. Another interesting aspect of the obtained model is that it provides a unification scenario of dark matter with dark energy.  相似文献   

10.
In previous work, we undertook to study static and anisotropic content in f(T) theory and obtained new spherically symmetric solutions considering a constant torsion and some particular conditions for the pressure. In this paper, still in the framework of f(T) theory, new spherically symmetric solutions are obtained, first considering the general case of an isotropic fluid and later the anisotropic content case in which the generalized conditions for the matter content are considered such that the energy density, the radial and tangential pressures depend on the algebraic f(T) and its derivative f T (T). Moreover, we obtain the algebraic function f(T) through the reconstruction method for two cases and also study a polytropic model for the stellar structure.  相似文献   

11.
We study the stability of the f(R)-AdS (Schwarzschild–AdS) black hole obtained from f(R) gravity. In order to resolve the difficulty of solving fourth-order linearized equations, we transform f(R) gravity into scalar–tensor theory by introducing two auxiliary scalars. In this case, the linearized curvature scalar becomes a dynamical scalaron, showing that all linearized equations are second order. Using the positivity of gravitational potentials and S-deformed technique allows us to guarantee the stability of f(R)-AdS black hole if the scalaron mass squared satisfies the Breitenlohner–Freedman bound. This is confirmed by computing quasinormal frequencies of the scalaron for the f(R)-AdS black hole.  相似文献   

12.
From a macroscopic theory of the quantum vacuum in terms of conserved relativistic charges (generically denoted by q (a) with label a), we have obtained, in the low-energy limit, a particular type of f(R) model relevant to cosmology. The macroscopic quantum-vacuum theory allows us to distinguish between different phenomenological f(R) models on physical grounds. The text was submitted by the authors in English.  相似文献   

13.
The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.  相似文献   

14.
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G5/6 support expansion of universe while those with f(G) = G1/2 do not favor the current expansion.  相似文献   

15.
The well-known energy problem is discussed in f (R) theory of gravity. We use the generalized Landau–Lifshitz energy–momentum complex in the framework of metric f (R) gravity to evaluate the energy density of plane symmetric solutions for some general f (R) models. In particular, this quantity is found for some popular choices of f (R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.  相似文献   

16.
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.  相似文献   

17.
A static, asymptotically flat, spherically symmetric solutions is investigated in f(R) theories of gravity for a charged black hole. We have studied the weak field limit of f(R) gravity for the some f(R) model such as f(R)=R+ε h(R). In particular, we consider the case lim  R→0 h(R)/h′(R)→0 and find the space time metric for f(R)=R+[(m4)/(R)]f(R)=R+{\mu^{4}\over R} and f(R)=R 1+ε theories of gravity far away a charged mass point.  相似文献   

18.
We study f(T) cosmological models inserting a non-vanishing spatial curvature and discuss its consequences on cosmological dynamics. To figure this out, a polynomial f(T) model and a double torsion model are considered. We first analyze those models with cosmic data, employing the recent surveys of Union 2.1, baryonic acoustic oscillation and cosmic microwave background measurements. We then emphasize that the two popular f(T) models enable the crossing of the phantom divide line due to dark torsion. Afterwards, we compute numerical bounds up to 3-\(\sigma \) confidence level, emphasizing the fact that \(\Omega _{k0}\) turns out to be non-compatible with zero at least at 1\(\sigma \). Moreover, we underline that, even increasing the accuracy, one cannot remove the degeneracy between our models and the \(\Lambda \)CDM paradigm. So that, we show that our treatments contain the concordance paradigm and we analyze the equation of state behaviors at different redshift domains. We also take into account gamma ray bursts and we describe the evolution of both the f(T) models with high redshift data. We calibrate the gamma ray burst measurements through small redshift surveys of data and we thus compare the main differences between non-flat and flat f(T) cosmology at different redshift ranges. We finally match the corresponding outcomes with small redshift bounds provided by cosmography. To do so, we analyze the deceleration parameters and their variations, proportional to the jerk term. Even though the two models well fit late-time data, we notice that the polynomial f(T) approach provides an effective de-Sitter phase, whereas the second f(T) framework shows analogous results compared with the \(\Lambda \)CDM predictions.  相似文献   

19.
We investigate propagations of graviton and additional scalar on four-dimensional anti-de Sitter (AdS4) space using f(R) gravity models with external sources. It is shown that there is the van Dam–Veltman–Zakharov (vDVZ) discontinuity in f(R) gravity models because f(R) gravity implies GR with additional scalar. This clearly indicates a difference between general relativity and f(R) gravity.  相似文献   

20.
This paper contains the study of spherically symmetric perfect fluid collapse in the frame work of f(R, T) modified theory of gravity. We proceed our work by considering the non-static spherically symmetric background in the interior and static spherically symmetric background in the exterior regions of the star. The junction conditions between exterior and interior regions are presented by matching the exterior and interior regions. The field equations are solved by taking the assumptions that the Ricci scalar as well as the trace of energy-momentum tensor are to be constant, for a particular f(R, T) model. By inserting the solution of the field equations in junction conditions, we evaluate the gravitational mass of the collapsing system. Also, we discuss the apparent horizons and their time formation for different possible cases. It is concluded that the term f(R 0, T 0) behaves as a source of repulsive force and that’s why it slowdowns the collapse of the matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号