首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Leslie Luthi 《Physica A》2008,387(4):955-966
Situations of conflict giving rise to social dilemmas are widespread in society. One way of studying these important phenomena is by using simplified models of individual behavior under conflicting situations such as evolutionary game theory. Starting from the observation that individuals interact through networks of acquaintances, we study the evolution of cooperation on model and real social networks through well known paradigmatic games. Using a new payoff scheme which leaves replicator dynamics invariant, we find that cooperation is sustainable in such networks, even in the difficult case of the prisoner’s dilemma. The evolution and stability of cooperation implies the condensation of game strategies into the existing community structures of the social network in which clusters of cooperators survive thanks to their higher connectivity towards other fellow cooperators.  相似文献   

2.
We explore the evolution of cooperation in the framework of the evolutionary game theory using the prisoner’s dilemma as metaphor of the problem. We present a minimal model taking into account the growing process of the systems and individuals with imitation capacity. We consider the topological structure and the evolution of strategies decoupled instead of a coevolutionary dynamic. We show conditions to build up a cooperative system with real topological structures for any natural selection intensity. When the system starts to grow, cooperation is unstable but becomes stable as soon as the system reaches a small core of cooperators whose size increases when the intensity of natural selection decreases. Thus, we reduce the evolution of cooperative systems with cultural reproduction to justify a small initial cooperative structure that we call cooperative seed. Otherwise, given that the system grows principally as cooperator whose cooperators inhabit the most linked parts of the system, the benefit-cost ratio required for cooperation evolve is drastically reduced compared to the found in static networks. In this way, we show that in systems whose individuals have imitation capacity the growing process is essential for the evolution of cooperation.  相似文献   

3.
We study the role of recommendation in a co-evolutionary public goods game in which groups can recommend their members for establishment of new relationships with individuals outside the current group according to group quality. Intriguingly, for square lattices and ER graphs there exists optimal group quality for recommendation that induces positive feedback between cooperation and recommendation. Snapshots of spatial patterns of cooperators, defectors, recommended cooperators and recommended defectors show that if group quality is appropriate for recommendation, cooperation and recommendation can simultaneously emerge. Moreover, we find that local recommendation improves cooperation more than global recommendation. As an extension, we also present results for Barabási–Albert networks. The positive effect of recommendation on cooperation for Barabási–Albert networks is independent of group quality. Our results provide an insight into the evolution of cooperation in real social systems.  相似文献   

4.
As multilayer networks are widely applied in modern society, numerous studies have shown the impact of a multilayer network structure and the network nature on the proportion of cooperators in the network. In this paper, we use Barabási–Albert scale-free networks (BA) and Watts and Strogatz networks (WS) to build a multilayer network structure, and we propose a new strategy-updating rule called “cooperation-defection dominance”, which can be likened to dominant and recessive traits in biogenetics. With the newly constructed multilayer network structure and the strategy-updating rules, based on the simulation results, we find that in the BA-BA network, the cooperation dominance strategy can make the networks with different rs show a cooperative trend, while the defection dominance strategy only has an obvious effect on the network cooperation with a larger r. When the BA network is connected to the WS network, we find that the effect of strategy on the proportion of cooperators in the network decreases, and the main influencing factor is the structure of the network. In the three-layer network, the cooperation dominance strategy has a greater impact on the BA network, and the proportion of the cooperators is enhanced more than under the natural evolution strategy, but the promotion effect is still smaller than that of the two-layer BA network because of the WS network. Under the defection dominance strategy, the WS layer appears different from the first two strategies, and we conclude through simulation that when the payoff parameter is at the middle level, its cooperator proportion will be suppressed, and we deduce that the proportion of cooperators and defectors, as well as the payoff, play an important role.  相似文献   

5.
Most previous investigations on spatial Public Goods Game assume that individuals treat neighbors equivalently, which is in sharp contrast with realistic situations, where bias is ubiquitous. We construct a model to study how a selective investment mechanism affects the evolution of cooperation. Cooperators selectively contribute to just a fraction among their neighbors. According to the interaction result, the investment network can be adapted. On selecting investees, three patterns are considered. In the random pattern, cooperators choose their investees among the neighbors equiprobably. In the social-preference pattern, cooperators tend to invest to individuals possessing large social ties. In the wealth-preference pattern, cooperators are more likely to invest to neighbors with higher payoffs. Our result shows robustness of selective investment mechanism that boosts emergence and maintenance of cooperation. Cooperation is more or less hampered under the latter two patterns, and we prove the anti-social-preference or anti-wealth-preference pattern of selecting investees can accelerate cooperation to some extent. Furthermore, the theoretical analysis of our mechanism on double-star networks coincides with simulation results. We hope our finding could shed light on better understanding of the emergence of cooperation among adaptive populations.  相似文献   

6.
Cooperation among individuals is considered to play an important role in the evolution of complex networked systems in physical, biological, economical and even epidemiological worlds, but its effects on the development of the systems is not so clear. We consider a specific kind of primal cooperation in a group of individuals, i.e., an individual never cooperates with others except when compelled to do so. The lowest level of compelled cooperation, in which cooperators share no message or resources, is investigated in the background of complex networks driven by the simple game rock-paper-scissors. Simulation results show that with the evolution of the systems, the cooperation will spread all over the networks, and finally results in systems with modular structures and a scale-free property.  相似文献   

7.
We study the evolutionary Prisoner's dilemma game on scale-free networks, focusing on the influence of different initial distributions for cooperators and defectors on the evolution of cooperation. To address this issue, we consider three types of initial distributions for defectors: uniform distribution at random, occupying the most connected nodes, and occupying the lowest-degree nodes, respectively. It is shown that initial configurations for defectors can crucially influence the cooperation level and the evolution speed of cooperation. Interestingly, the situation where defectors initially occupy the lowest-degree vertices can exhibit the most robust cooperation, compared with two other distributions. That is, the cooperation level is least affected by the initial percentage of defectors. Moreover, in this situation, the whole system evolves fastest to the prevalent cooperation. Besides, we obtain the critical values of initial frequency of defectors above which the extinction of cooperators occurs for the respective initial distributions. Our results might be helpful in explaining the maintenance of high cooperation in scale-free networks.  相似文献   

8.
Basic evidences on non-profit making and other forms of benevolent-based organizations reveal a rough partition of members between some pure consumers of the public good (free-riders) and benevolent individuals (cooperators). We study the relationship between the community size and the level of cooperation in a simple model where the utility of joining the community is proportional to its size. We assume an idiosyncratic willingness to join the community ; cooperation bears a fixed cost while free-riding bears a (moral) idiosyncratic cost proportional to the fraction of cooperators. We show that the system presents two types of equilibria: fixed points (Nash equilibria) with a mixture of cooperators and free-riders and cycles where the size of the community, as well as the proportion of cooperators and free-riders, vary periodically.  相似文献   

9.
《Physics letters. A》2020,384(14):126276
We explore the evolution of cooperation in a public goods game where the habitat destruction is taken into account. A model of ordinary differential equations is proposed, in which incorporate the habitat destroyed. And we focus on the impact of different levels of habitat destruction on cooperation. Our results show that the fraction of cooperation receives the biggest boost for moderate habitat destruction, and decreases to zero very quickly for a higher degree of habitat destruction. Similarly, our results suggest that low or moderate habitat degradation can promote the evolution of cooperators, and once habitat degradation is too severe, the fraction of cooperators will decline dramatically. Furthermore, we investigate the cooperation level with different multiplication factor, and results demonstrate that the cooperation increases monotonously with the increasing of the multiplication factor. Our findings may provide many more insights for understanding the emergence and maintenance of cooperation in the complex biological and social systems.  相似文献   

10.
We consider the coupled dynamics of the adaption of network structure and the evolution of strategies played by individuals occupying the network vertices. We propose a computational model in which each agent plays a n-round Prisoner's Dilemma game with its immediate neighbors, after that, based upon self-interest, partial individuals may punish their defective neighbors by dismissing the social tie to the one who defects the most times, meanwhile seek for a new partner at random from the neighbors of the punished agent. It is found that the promotion of cooperation is attributed to the entangled evolution of individual strategy and network structure. Moreover, we show that the emerging social networks exhibit high heterogeneity and disassortative mixing pattern. For a given average connectivity of the population and the number of rounds, there is a critical value for the fraction of individuals adapting their social interactions, above which cooperators wipe out defectors. Besides, the effects of the average degree, the number of rounds, and the intensity of selection are investigated by extensive numerical simulations. Our results to some extent reflect the underlying mechanism promoting cooperation.  相似文献   

11.
In some real complex systems the structures are difficult to map or changing over time. To explore the evolution of strategies on these complex systems, it is not realistic enough to specify their structures or topological properties in advance. In this paper, we address the evolutionary game on a stochastic growth network adopting the prisoner’s dilemma game. We introduce a growing rate qq to control the ratio of network growth to strategy evolution. A large qq denotes that the network grows faster than strategy evolution. Simulation results show that a fast growing rate is helpful to promote the average payoffs of both cooperators and defectors. Moreover, this parameter also significantly influences the cooperation frequency on the resulting networks. The coexisting mechanisms in this paper may provide a beneficial insight for understanding the emergence of complex topological structures and game behaviors in numerous real systems.  相似文献   

12.
We study effects of average degree on cooperation in the networked prisoner's dilemma game. Typical structures are considered, including random networks, small-world networks and scale-free networks. Simulation results show that the average degree plays a universal role in cooperation occurring on all these networks, that is the density of cooperators peaks at some specific values of the average degree. Moreover, we investigated the average payoff of players through numerical simulations together with theoretical predictions and found that simulation results agree with the predictions. Our work may be helpful in understanding network effects on the evolutionary games.  相似文献   

13.
We focus on the heterogeneity of social networks and its role to the emergence of prevailing cooperators and sustainable cooperation. The social networks are representative of the interaction relationships between players and their encounters in each round of games. We study an evolutionary Prisoner's Dilemma game on a variant of Newman-Watts small-world network, whose heterogeneity can be tuned by a parameter. It is found that optimal cooperation level exists at some intermediate topological heterogeneity for different temptations to defect. That is, frequency of cooperators peaks at a certain specific value of degree heterogeneity — neither the most heterogeneous case nor the most homogeneous one would favor the cooperators. Besides, the average degree of networks and the adopted update rule also affect the cooperation level.  相似文献   

14.
Xianyu Bo 《Physica A》2010,389(5):1105-1114
Prevailing models of the evolutionary prisoner’s game on networks always assume that agents are pursuing their own profit maximization. But the results from experimental games show that many agents have other-regarding preference. In this paper, we study the emergence of cooperation from the prisoner’s dilemma game on complex networks while some agents exhibit other-regarding preference such as inequality aversion, envious and guilty emotions. Contrary to common ideas, the simulation results show that the existence of inequality aversion agents does not promote cooperation emergence on a BA (Barabási and Albert) scale-free network in most situations. If the defection attraction is big and agents exhibit strong preference for inequality aversion, the frequency of cooperators will be lower than in situations where no inequality aversion agents exist. In some cases, the existence of the inequality agents will even induce the frequency of cooperators to zero, a feature which is not observed in previous research on the prisoner’s dilemma game when the underlying interaction topology is a BA scale-free network. This means that if an agent cares about equality too much, it will be difficult for cooperation to emerge and the frequency of cooperators will be low on BA networks. The research on the effect of envy or guilty emotions on the emergence of cooperation in the prisoner’s dilemma game on BA networks obtains similar results, though some differences exist. However, simulation results on a WS (Watts and Strogatz) small-world network display another scenario. If agents care about the inequality of agents very much, the WS network favors cooperation emergence in the prisoners’ dilemma game when other-regarding agents exist. If the agent weight on other-regarding is lowered, the cooperation frequencies emerging on a WS network are not much different from those in situations without other-regarding agents, although the frequency of cooperators is lower than those of the situation without other-regarding preference agents sometimes. All the simulation results imply that inequality aversion and its variations can have important effects on cooperation emergence in the prisoner’s dilemma game, and different network topologies have different effects on cooperation emergence in the prisoner’s dilemma game played on complex networks.  相似文献   

15.
虚拟社区网络的演化过程研究   总被引:4,自引:0,他引:4       下载免费PDF全文
张立  刘云 《物理学报》2008,57(9):5419-5424
模拟了虚拟社区网络的演化过程并研究其拓扑结构.发现虚拟社区网络在演化过程中,节点的加入、边的加入、网络中度分布、节点的度与其加入网络时间的关系、平均度随时间的变化等方面与传统的无标度网络有所不符.根据国内某论坛的实际网络数据统计与分析,提出了虚拟社区网络的演化机理——虚拟社区网络构造算法.仿真结果表明,模拟以互联网论坛为代表的虚拟社区网络时,该模型能够得到与真实网络相符的特性. 关键词: 复杂网络 虚拟社区 无标度网络  相似文献   

16.
陈含爽  侯中怀  张季谦  辛厚文 《中国物理 B》2010,19(5):50205-050205
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability $p$ or update their strategies with probability $1-p$ depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of $p$ via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.  相似文献   

17.
《Physics letters. A》2020,384(17):126343
The public goods game is an important theoretical model for investigating the emergence of cooperation in the multi-player social dilemma. It has been proven that scale-free networks can significantly promote cooperation, but fail to sustain cooperation when the player obtains the normalized payoff. In this paper, we introduce heterogeneous investment mechanism into the public goods game on scale-free networks, and study the evolution of cooperation in both cases of accumulated and normalized payoff. Our research reveals that the heterogeneous investment mechanism can obviously facilitate cooperation as the adjusted parameter α increases. The increase of α allows cooperators to emerge under lower values of r. In the case of accumulated payoff, cooperators always firmly occupy the hubs, and the population keeps high cooperation level. In the case of normalized payoff, the increase of α changes the situation that the hubs are easily invaded by defectors, and inhibits the spread of defectors.  相似文献   

18.
In this paper,we study the influence of the size of interaction neighbors(k) on the evolution of cooperation in the spatial snowdrift game.At first,we consider the effects of noise K and cost-to-benefit ratio r,the simulation results indicate that the evolution of cooperation depends on the combined action of noise and cost-to-benefit ratio.For a lower r,the cooperators are multitudinous and the cooperation frequency ultimately increases to 1 as the increase of noise.However,for a higher r,the defectors account for the majority of the game and dominate the game if the noise is large enough.Then we mainly investigate how k influences the evolution of cooperation by varying the noise in detail.We find that the frequency of cooperators is closely related to the size of neighborhood and cost-to-benefit ratio r.In the case of lower r,the augmentation of k plays no positive role in promoting the cooperation as compared with that of k = 4,while for higher r the cooperation is improved for a growing size of neighborhood.At last,based on the above discussions,we explore the cluster-forming mechanism among the cooperators.The current results are beneficial to further understand the evolution of cooperation in many natural,social and biological systems.  相似文献   

19.
In this Letter, we study how cooperation is organized in complex topologies by analyzing the evolutionary (replicator) dynamics of the prisoner's dilemma, a two-player game with two available strategies, defection and cooperation, whose payoff matrix favors defection. We show that, asymptotically, the population is partitioned into three subsets: individuals that always cooperate (pure cooperators), always defect (pure defectors), and those that intermittently change their strategy. In fact, the size of the later set is the biggest for a wide range of the "stimulus to defect" parameter. While in homogeneous random graphs pure cooperators are grouped into several clusters, in heterogeneous scale-free (SF) networks they always form a single cluster containing the most connected individuals (hubs). Our results give further insights into why cooperation in SF networks is enhanced.  相似文献   

20.
Much of human cooperation remains an evolutionary riddle. Coevolutionary public goods games in structured populations are studied where players can change from an unproductive public goods game to a productive one, by evaluating the productivity of the public goods games. In our model, each individual participates in games organized by its neighborhood plus by itself. Coevolution here refers to an evolutionary process entailing both deletion of existing links and addition of new links between agents that accompanies the evolution of their strategies. Furthermore, we investigate the effects of time scale separation of strategy and structure on cooperation level. This study presents the following: Foremost, we observe that high cooperation levels in public goods interactions are attained by the entangled coevolution of strategy and structure. Presented results also confirm that the resulting networks show many features of real systems, such as cooperative behavior and hierarchical clustering. The heterogeneity of the interaction network is held responsible for the observed promotion of cooperation. We hope our work may offer an explanation for the origin of large-scale cooperative behavior among unrelated individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号