首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) ?, b = 13.4298(9) ?, c = 17.8471(14) ?, β = 94.531(6)°, V = 2210.5(3) ?(3); 2, a = 9.0149(3) ?, b = 16.9298(4) ?, c = 15.6864(4) ?, β = 90.129(3)°, V = 2394.06(12) ?(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1? both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) ?, b = 20.3871(9) ?, c = 34.9715(15) ?, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) ?(3); 5, a = 20.0329(4) ?, b = 20.0601(4) ?, c = 34.3532(6) ?, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) ?(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.  相似文献   

2.
In this contribution, we describe the preparation and single-crystal X-ray diffraction of a new building block for bimetallic solid state materials. X-ray diffraction data of these complexes indicate that (PPh(4))(2)[Fe(CN)(5)imidazole]·2H(2)O crystallizes in the triclinic space group P1 with a = 9.8108(15) ?, b = 11.1655(17) ?, c = 23.848(4) ?, α = 87.219(2)°, β = 85.573(2)°, γ = 70.729(2)°, and Z = 2, while its precursor Na(3)[Fe(CN)(5)(en)]·5H(2)O crystallizes in the monoclinic space group P2(1)/n with a = 8.3607(7) ?, b = 11.1624(9) ?, c = 17.4233(14) ?, β = 90.1293(9)°, and Z = 4. Spectroscopic and magnetic properties of a series of bimetallic materials were obtained by reaction of the complex [Fe(CN)(5)imidazole](2-) with hydrated transition metal ions [M(H(2)O)(n)](2+) (M = Mn, Co, Zn; n = 4 or 6). The new bimetallic materials obtained are [Co(H(2)O)(2)][Fe(CN)(5)imidazole]·2H(2)O (1), [Mn(CH(3)OH)(2)][Fe(CN)(5)imidazole] (2), Zn[Fe(CN)(5)imidazole]·H(2)O (3), and [Mn(bpy)][Fe(CN)(5)imidazole].H(2)O (4). All of the complexes crystallize in the orthorhombic system. X-ray single-crystal analysis of the compounds identified the Imma space group with a = 7.3558(10) ?, b = 14.627(2) ?, c = 14.909(2) ?, and Z = 4 for 1; the P2(1)2(1)2(1) space group with a = 7.385(5) ?, b = 13.767(9) ?, c = 14.895(10) ?, and Z = 4 for 2; the Pnma space group with a = 13.783(2) ?, b = 7.167(11) ?, c = 12.599(2) ?, and Z = 4 for 3; and the Pnma space group with a = 13.192(3) ?, b = 7.224(16) ?, c = 22.294(5) ?, and Z = 4 for 4. The structures of 1, 2, and 4 consist of two-dimensional network layers containing, as the repeating unit, a cyclic tetramer [M(2)Fe(2)(CN)(4)] (M = Mn, Co). H bonding between the layers in the structure of 1 results in a quasi-three-dimensional network. The structure of 3 was found to be three-dimensional, where all of the cyano ligands are involved in bridging between the metal centers. The bridging character of the cyano is confirmed spectroscopically. The magnetic properties have been investigated for all of the bimetallic systems. Compound 1 shows ferromagnetic behavior with an ordering temperature at 25 K, which is higher than the corresponding Prussian Blue analogue Co(x)[Fe(CN)(6)](y)?·zH(2)O. Compound 2 shows weak ferromagnetic behavior and an interlayer antiferromagnetic character, while 3, as expected, shows paramagnetic character due to the diamagnetic character of Zn(2+). Compound 4 shows antiferromagnetic behavior.  相似文献   

3.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

4.
Ni-centered deltahedral Sn(9) clusters with a charge of 4-, i.e., [Ni@Sn(9)](4-), were extracted in ethylenediamine in high yield directly from intermetallic precursors with the nominal composition "K(4)Sn(9)Ni(3)". The new endohedral clusters were crystallized and structurally characterized in K[K(18-crown-6)](3)[Ni@Sn(9)]·3benzene (1a, triclinic, P1?, a = 10.2754(5) ?, b = 19.5442(9) ?, and c = 20.5576(13) ?, α = 73.927(3)°, β = 79.838(4)°, and γ = 84.389(3)°, V = 3899.6(4) ?(3), Z = 2) and K[K(2,2,2-crypt)](3)[Ni@Sn(9)] (1b, triclinic, P1, a = 15.8028(8) ?, b = 16.21350(9) ?, and c = 20.1760(12) ?, α = 98.71040(10)°, β = 104.4690(10)°, and γ = 118.3890(10)°, V = 4181.5(4) ?(3), Z = 2). The alternative method of a post-synthetic insertion of a Ni atom in empty Sn(9) clusters by a reaction with Ni(cod)(2) predominantly produces the more-oxidized clusters with a charge of 3-, i.e., the recently reported [Ni@Sn(9)](3-). Nonetheless, using substoichiometric amounts of 18-crown-6 as a cation sequestering agent, we also have been able to isolate the 4- clusters as a minor phase from such reactions. They were structurally characterized in K[K(en)][K(18-crown-6)](2)[Ni@Sn(9)]·0.5en (2, monoclinic, P2(1)/n, a = 10.4153(5) ?, b = 25.6788(11) ?, and c = 20.6630(9) ?, β = 102.530(2)°, V = 5394.7(4) ?(3), Z = 2). The ability of the Ni-centered clusters to exist with both 3- and 4- charges parallels the same ability of the empty clusters and is very promising for similarly rich chemistry involving electron transfer and flexible "oxidation states". We also report the synthesis and characterization of the endohedral heteroatomic dimer [{Ni@Sn(8)(μ-Ge)(1/2)}(2)](4-) composed of two [Ni@(Sn(8)Ge)]-clusters fused at the Ge-vertex. The dimer was synthesized by reacting an ethylenediamine solution of a ternary precursor with the nominal composition "K(4)Ge(4.5)Sn(4.5)", which is known to produce heteroatomic Ge(9-x)Sn(x) clusters, with Ni(cod)(2). It is isostructural with the reported [{Ni@Sn(8)(μ-Sn)(1/2)}(2)](4-) and is structurally characterized in [K-(2,2,2-crypt)](4)[{Ni@Sn(8)(μ-Ge)(1/2)}(2)]·2en (3, monoclinic, C2/c, a = 30.636(2) ?, b = 16.5548(12) ?, and c = 28.872(2) ?, β = 121.2140(10)°, V = 12523.5(15) ?(3), Z = 4).  相似文献   

5.
Su T  Xing H  Xu J  Yu J  Xu R 《Inorganic chemistry》2011,50(3):1073-1078
Three new open-framework metal borophosphates, [Na(6)Co(3)B(2)P(5)O(21)Cl]·H(2)O (JIS-4), K(5)Mn(2)B(2)P(5)O(19)(OH)(2) (JIS-5), (NH(4))(8)[Co(2)B(4)P(8)O(30)(OH)(4)] (JIS-6), have been prepared under ionothermal conditions using ionic liquid 1-ethyl-3-methylimidazolium ([Emim]Br) as the solvent. They are the first examples of metalloborophosphate prepared by the ionothermal method. Their structures are determined by single-crystal X-ray diffraction. The 3-D open framework of JIS-4 is made of CoO(5)Cl octahedra, CoO(5) square pyramids, and PO(4) and BO(4) tetrahedra forming 12-ring channels along the [010] direction. It is noted that JIS-4 is the first 3-D open-framework structure in the family of borophosphate with the B/P ratio of 2/5, which features a borophosphate cluster anionic partial structure. Such cluster anionic partial structures connect with MnO(6) octahedra and MnO(5) trigonal bipyramids resulting in the formation of the 2-D layer structure of JIS-5 with the same B/P ratio as JIS-4. The 2-D layer structure of JIS-6 belongs to the largest family of borophosphate with a B/P ratio of 1/2 which features a unique 1-D chain anionic partial structure. Crystal data for JIS-4, orthorhombic, Pnma, a = 14.0638(8) ?, b = 9.8813(7) ?, c = 14.0008(10) ?, V = 1945.7(2) ?(3), and Z = 2; for JIS-5, monoclinic, P2(1)/n, a = 14.4939(3) ?, b = 9.2539(3) ?, c = 14.8031(4) ?, β = 101.4600(10)°, V = 1945.88(9) ?(3), and Z = 4. For JIS-6, triclinic, P1, a = 9.6928(3) ?, b = 9.8747(3) ?, c = 10.0125(2) ?, α = 62.057(2)°, β = 82.456(2)°, γ = 76.095(2)°, V = 821.60(4) ?(3), and Z = 1.  相似文献   

6.
A new homoleptic sublimable indium(III) guanidinate, (In[(N(i)Pr)(2)CNMe(2)](3) (1), was synthesized from a facile high-yield procedure. Compound 1 crystallized is a P1 space group; a = 10.5989(14) ?, b = 11.0030(15) ?, c = 16.273(2) ?, α = 91.190(2)°, β = 96.561(2)°, γ = 115.555(2)°; R = 3.50%. Thermogravimetric analysis showed 1 to produce elemental indium as a residual mass. Thermolysis in a sealed NMR tube showed carbodiimide and protonated dimethyl amine by (1)H NMR. Chemical vapour deposition experiments above 275 °C with air as the reactant gas showed 1 to readily deposit cubic indium oxide with good transparency.  相似文献   

7.
A pentavalent uranium germanate, Cs(3)UGe(7)O(18), was synthesized under high-temperature, high-pressure hydrothermal conditions at 585 °C and 160 MPa and structurally characterized by single-crystal X-ray diffraction and infrared spectroscopy. The valence state of uranium was confirmed by X-ray photoelectron spectroscopy and electron paramagnetic resonance. The room-temperature EPR spectrum can be simulated with two components using an axial model that are consistent with two distinct sites of uranium(V). In the structure of the title compound, each ([6])GeO(6) octahedron is bonded to six three-membered single-ring ([4])Ge(3)O(9)(6-) units to form germanate triple layers in the ab plane. Each layer contains nine-ring windows; however, these windows are blocked by adjacent layers. The triple layers are further connected by UO(6) octahedra to form a three-dimensional framework with intersecting six-ring channels along the <1 ?10> directions. The Cs(+) cation sites are fully occupied, ordered, and located in the cavities of the framework. Pentavalent uranium germanates or silicates are very rare, and only two uranium silicates and one germanate analogue have been published. However, all of them are iso-structural with those of the Nb or Ta analogues. In contrast, the title compound adopts a new structural type and contains both four- and six-coordinate germanium. Crystal data of Cs(3)UGe(7)O(18): trigonal, P3?c1 (No. 165), a = 12.5582(4) ?, c = 19.7870(6) ?, V = 2702.50(15) ?(3), Z = 6, D(calc) = 5.283 g·cm(-3), μ(Mo Kα) = 26.528 mm(-1), R(1) = 0.0204, wR(2) = 0.0519 for 1958 reflections with I > 2σ(I). GooF = 1.040, ρ(max,min) = 1.018, and -1.823 e·?(-3).  相似文献   

8.
Su J  Wang Y  Wang Z  Liao F  Lin J 《Inorganic chemistry》2010,49(21):9765-9769
PKU-10, a germanate with the formula [(CH(3))(4)N](3)Ge(11)O(19)(OH)(9), is synthesized under hydrothermal conditions, and its structure is determined by single-crystal X-ray diffraction data. PKU-10 possesses 3D intersected 13-ring channels and presents a new 6-connectedness linkage mode of the Ge(7) cluster, T(3)P(2)O, forming a pcu topological network. Each Ge(7) cluster is, in fact, surrounded by eight Ge(7) clusters in a nearly perfect cube because the hydrogen bonds between Ge(7) clusters are also taken into account. The structure-directing agent tetramethylammonium (TMA(+)) ions, locating in the channels, can be partially exchanged by Li(+) with retention of the germanate framework. The germanate framework collapses with decomposition of the TMA(+) ions at temperatures higher than 240 °C.  相似文献   

9.
New two-dimensional (2D) bismuth and three-dimensional (3D) lead based coordination polymers containing pyridine-2,5-dicarboxylate ligands (H(2)pydc) have been synthesized hydrothermally and characterized by single crystal X-ray diffraction. Bi(3)(μ(3)-O)(2)(pydc)(2)(Hpydc)(H(2)O)(2) (1), which crystallizes in the space group P1? (a = 8.7256(5) ?, b = 11.1217(7) ?, c = 14.0933(9) ?, α = 85.239(1)°, β = 98.582(1)°, γ = 71.106(1)°), has a 3D structure that contains Bi(6)O(4) clusters that connect into 2D sheets via linking ligands. The sheets form a 3D supramolecular structure via hydrogen bonding along the z-axis. Pb(pydc)(H(2)O) (2), which crystallizes in the space group P2(1)/c (a = 10.8343(14) ?, b = 11.2099(15) ?, c = 6.6573(9) ?, β = 90.697(2)°), contains 1D chains of corner-sharing distorted face capped trigonal prisms that are connected into a 3D framework via the pydc ligand. In addition, the ligands are hydrogen bonded to each other. Both 1 and 2 are single component "white" light emitting phosphors and are shown to exhibit "white" luminescence that covers a much wider spectral range than is observed for the as received H(2)pydc ligand.  相似文献   

10.
The reaction of N-(phosphonomethyl)piperidine and N,N'-bis(phosphonomethyl)bipiperidine with zirconium(IV) in hydrofluoric acid media led to the preparation of two new zirconium fluoride phosphonate derivatives with 1D and 2D structure, respectively. Their structures were solved ab initio from laboratory powder X-ray diffraction (PXRD) data. The monophosphonate derivative, with formula ZrF(2)(HF)(O(3)PCH(2)NC(5)H(10)), has a 1D structure (triclinic, space group P ?1, a = 6.6484(3) ?, b = 7.1396(3) ?, c = 12.2320(6) ?, α = 77.932(4)°, β = 87.031(6)°, γ = 78.953(5)°, V = 557.22(4) ?(3), and Z = 2) made of inorganic chains constituted from the connection of zirconium octahedra and phosphorus tetrahedra with the piperidine groups bonded on their external part. The diphosphonate derivative, with formula Zr(2)F(4)(HF)(2)(O(3)PCH(2))NC(10)H(18)N(CH(2)PO(3)), has a 2D structure (triclinic, space group P ?1, a = 6.6243(3) ?, b = 7.2472(4) ?, c = 12.2550(7) ?, α = 102.879(4)°, β = 100.29(1)°, γ = 101.287(7)°, V = 547.03(4) ?(3), and Z = 1) composed of the packing of covalent layers whose structure may be ideally obtained by the joining of adjacent chains of the 1D compound. In these hybrid layers, inorganic regions made of the connectivity of zirconium octahedra and phosphorus tetrahedra alternate with organic regions represented by the bipiperidine moieties. A section dedicated to vibrational spectroscopy analysis is also included, mainly devoted to clarify some issues not easily deducible on the basis of PXRD data and to describe the fluorine environment inside zirconium phosphonate structures.  相似文献   

11.
Microcrystalline single-phase strontium oxotellurate(IV) monohydrate, SrTeO(3)(H(2)O), was obtained by microwave-assisted hydrothermal synthesis under alkaline conditions at 180 °C for 30 min. A temperature of 220 °C and longer reaction times led to single crystal growth of this material. The crystal structure of SrTeO(3)(H(2)O) was determined from single crystal X-ray diffraction data: P2(1)/c, Z = 4, a = 7.7669(5), b = 7.1739(4), c = 8.3311(5) ?, β = 107.210(1)°, V = 443.42(5) ?(3), 1403 structure factors, 63 parameters, R[F(2)>2σ(F(2))] = 0.0208, wR(F(2) all) = 0.0516, S = 1.031. SrTeO(3)(H(2)O) is isotypic with the homologous BaTeO(3)(H(2)O) and is characterised by a layered assembly parallel to (100) of edge-sharing [SrO(6)(H(2)O)] polyhedra capped on each side of the layer by trigonal-prismatic [TeO(3)] units. The cohesion of the structure is accomplished by moderate O-H···O hydrogen bonding interactions between donor water molecules and acceptor O atoms of adjacent layers. In a topochemical reaction, SrTeO(3)(H(2)O) condensates above 150 °C to the metastable phase ε-SrTeO(3) and transforms upon further heating to δ-SrTeO(3). The crystal structure of ε-SrTeO(3), the fifth known polymorph of this composition, was determined from combined electron microscopy and laboratory X-ray powder diffraction studies: P2(1)/c, Z = 4, a = 6.7759(1), b = 7.2188(1), c = 8.6773(2) ?, β = 126.4980(7)°, V = 341.20(18) ?(3), R(Fobs) = 0.0166, R(Bobs) = 0.0318, Rwp = 0.0733, Goof = 1.38. The structure of ε-SrTeO(3) shows the same basic set-up as SrTeO(3)(H(2)O), but the layered arrangement of the hydrous phase transforms into a framework structure after elimination of water. The structural studies of SrTeO(3)(H(2)O) and ε-SrTeO(3) are complemented by thermal analysis and vibrational spectroscopic measurements.  相似文献   

12.
An uranyl isophthalate has been hydrothermally synthesized at 200 °C for 24 h, from a mixture of uranyl nitrate, isophthalic acid, and hydrazine in water. It was characterized by single-crystal analysis [triclinic, P ?1, a = 7.3934(3) ?, b = 13.3296(5) ?, c = 15.4432(5) ?, α = 111.865(2)°, β = 90.637(2)°, γ = 104.867(2)°, V = 1355.49(9) ?(3)] and different spectroscopic techniques (Raman, IR-ATR, UV-visible). The 3D structure of the phase (UO(2))(8)O(2)(OH)(4)(H(2)O)(4)(1,3-bdc)(4)·4H(2)O (1,3-bdc = 1,3-benzenedicarboxylate) reveals octanuclear units based on the association of 7-fold coordinated uranyl cations (pentagonal bipyramid) involving a rare case of cation-cation interaction together with edge-sharing polyhedral connection mode. UV-visible absorption spectroscopy confirmed that uranium was only involved in the structure as uranyl forms (excluding the presence of tetravalent or pentavalent uranium). Additionally, μ-Raman and IR-ATR experiments allowed assigning four uranyl contributions to the four types of uranyl entities in the structure, in agreement with the XRD analysis.  相似文献   

13.
The sulfates Nb(2)O(2)(SO(4))(3), MoO(2)(SO(4)), WO(SO(4))(2,) and two modifications of Re(2)O(5)(SO(4))(2) have been synthesized by the solvothermal reaction of NbCl(5), WOCl(4), Re(2)O(7)(H(2)O)(2), and MoO(3) with sulfuric acid/SO(3) mixtures at temperatures between 200 and 300 °C. Besides the X-ray crystal structure determination of all compounds, the thermal behavior was investigated using thermogravimetric studies. WO(SO(4))(2) (monoclinic, P2(1)/n, a = 7.453(1) ?, b = 11.8232(8) ?, c = 7.881(1) ?, β = 107.92(2)°, V = 660.7(1) ?(3), Z = 4) and both modifications of Re(2)O(5)(SO(4))(2) (I: orthorhombic, Pba2, a = 9.649(1) ?, b = 8.4260(8) ?, c = 5.9075(7) ?, V = 480.27(9) ?(3), Z = 2; II: orthorhombic, Pbcm, a = 7.1544(3) ?, b = 7.1619(3) ?, c = 16.8551(7) ?, V = 863.64(6) ?(3), Z = 4) are the first structurally characterized examples of tungsten and rhenium oxide sulfates. Their crystal structure contains layers of sulfate connected [W═O] moieties or [Re(2)O(5)] units, respectively. The cohesion between layers is realized through weak M-O contacts (343-380 pm). Nb(2)O(2)(SO(4))(3) (orthorhombic, Pna2(1), a = 9.9589(7) ?, b = 11.7983(7) ?, c = 8.6065(5) ?, V = 1011.3(1) ?(3), Z = 4) represents a new sulfate-richer niobium oxide sulfate. The crystal structure contains a three-dimensional network of sulfate connected [Nb═O] moieties. In MoO(2)(SO(4)) (monoclinic, I2/a, a = 8.5922(6) ?, b = 12.2951(6) ?, c = 25.671(2) ?, β = 94.567(9)°, V = 2703.4(3) ?(3), Z = 24) [MoO(2)] units are connected through sulfate ions to a three-dimensional network, which is pervaded by channels along [100] accommodating the terminal oxide ligands. In all compounds except WO(SO(4))(2), the metal ions are octahedrally coordinated by monodentate sulfate ions and oxide ligands forming short M═O bonds. In WO(SO(4))(2), the oxide ligand and two monodentate and two bidentate sulfate ions build a pentagonal bipyramid around W. The thermal stability of the sulfates decreases in the order Nb > Mo > W > Re; the residues formed during the decomposition are the corresponding oxides.  相似文献   

14.
Reactions in acetonitrile between 1,4-benzene-dicarboxylic acid (C(8)H(6)O(4)) and a hexanuclear complex of lanthanide [Ln(6)O(OH)(8)(NO(3))(6)·2NO(3)] with Ln = Y or Tb lead to 1D-coordination polymers with the general chemical formula {[Ln(6)O(OH)(8)](NO(3))(2)(bdc)(Hbdc)(2)·2NO(3)·H(2)bdc}(∞) where H(2)bdc stands for 1,4-benzene-dicarboxylic acid (or terephthalic acid). These two compounds are isostructural. The crystal structure has been solved on the basis of the X-ray powder diffraction diagram of the Y-containing compound. This compound crystallizes in the triclinic system, space group P1 (no. 2) with a = 10.4956(6) ?, b = 11.529(2) ?, c = 12.357(2) ?, α = 86.869(9)°, β = 114.272(6)°, γ = 71.624(7)°, V = 1264.02 ?(3), and Z = 2. The crystal structure can be described as the juxtaposition of linear chains of hexanuclear entities linked to each other by terephthalate ligands. Two additional partially protonated terephthalate ligands spreading laterally to the chain are bound to each hexanuclear entity. Another diprotonated terephthalic ligand and two nitrate ions ensuring the electroneutrality of the crystal structure lie in the interchain space. These two compounds are thermally stable until 200 °C. Thanks to a so-called antenna effect, the Tb-containing compound, despite short intermetallic distances, exhibits a strong luminescence under UV irradiation.  相似文献   

15.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

16.
Two new hydrated borates Sr(3)B(6)O(11)(OH)(2) (1) and Ba(3)B(6)O(11)(OH)(2) (2) were hydrothermally synthesized. Their structures were determined by single-crystal X-ray diffraction and further characterized by IR, powder XRD, and DSC/TGA. Compound 1 crystallizes in the triclinic space group P-1 with unit cell parameters of a = 6.6275(13) ?, b = 6.6706(13) ?, c = 11.393(2) ?, α = 91.06(3)°, β = 94.50(3)°, and γ = 93.12(3)°, while compound 2 crystallizes in the noncentrosymmetric monoclinic space group Pc with a = 6.958(14) ?, b = 7.024(14) ?, c = 11.346(2) ?, and β = 90.10(3)°. In spite of the differences in symmetry and packing of the borate chains, both structures consist of the same fundamental building block (FBB) of a [B(6)O(11)(OH)(2)](-6) unit and three unique alkaline earth metal atoms.  相似文献   

17.
Dark green crystals of (NpO(2))(3)(OH)(SeO(3))(H(2)O)(2)·H(2)O (1) have been prepared by a hydrothermal reaction of neptunyl(V) and Na(2)SeO(4) in an aqueous solution at 150 °C, while green plates of Na(NpO(2))(SeO(3))(H(2)O) (2) have been synthesized by evaporation of a solution of neptunyl(V), H(2)SeO(4), and NaOH at room temperature. Both compounds have been characterized by single-crystal X-ray diffraction. The structure of compound contains three crystallographically unique Np atoms that are bonded to two O atoms to form a nearly linear O═Np═O NpO(2)(+) cation. Neighboring Np(5+) ions connect to each other through a bridging oxo ion from the neptunyl unit, a configuration known as cation-cation interactions (CCIs), to build a complex three-dimensional network. More specifically, each Np(1)O(2)(+), Np(2)O(2)(+), and Np(3)O(2)(+) cation is involved in three, five, and four CCIs with other units, respectively. The framework of neptunyl(V) pentagonal bipyramids is decorated by selenite trigonal pyramids with one-dimensional open channels where uncoordinated waters are trapped via hydrogen bonding interactions. Compound adopts uranophane-type [(NpO(2))(SeO(3))](-) layers, which are separated by Na(+) cations and water molecules. Within each layer, neptunyl(V) pentagonal bipyramids share equatorial edges with each other to form a single chain that is further connected by both monodentate and bidentate selenite trigonal pyramids. Crystallographic data: compound, monoclinic, P2(1)/c, Z = 4, a = 6.6363(8) ?, b = 15.440(2) ?, c = 11.583(1) ?, β = 103.549(1)°, V = 1153.8(2) ?(3), R(F) = 0.0387 for I > 2σ(I); compound (2), monoclinic, C2/m, Z = 4, a = 14.874(4) ?, b = 7.271(2) ?, c = 6.758(2) ?, β = 112.005(4)°, V = 677.7(3) ?(3), R(F) = 0.0477 for I > 2σ(I).  相似文献   

18.
With the high-throughput (HT) methodology, the bifunctional aminoalkylphosphonic acids (AAPA) linker molecules 2-aminoethyl- (AEPA), 3-aminopropyl- (APPA), and 4-aminobutylphosphonic acid (ABPA) [HO(3)P-C(n)H(2n)-NH(2) (n = 2-4)] and zinc nitrate were used to synthesize new metal phosphonates in order to investigate the influence of the alkyl chain length on the structure formation. The systematic investigations led to one known (ZnO(3)PC(2)H(4)NH(2)) and six new compounds: one using AEPA, three using APPA, and two using ABPA. The crystal structures of five compounds were determined by single crystal X-ray diffraction, using X-ray powder diffraction (XRPD) data as well as structure modeling employing force field methods. For compound 1, Zn(O(3)P-C(2)H(4)-NH(3))(NO(3))(H(2)O) (monoclinic, Cc, a = 4.799(1) ?, b = 29.342(6) ?, c = 5.631(1) ?, β = 91.59(3)°, V = 792.7(3) ?(3), Z = 4), and compound 2, Zn(2)(OH)(O(3)P-C(3)H(6)-NH(3))(NO(3)) (monoclinic, P2/c, a = 12.158(2) ?, b = 5.0315(10) ?, c = 13.952(3) ?, β = 113.23(3)°, V = 784.3(3) ?(3), Z = 2), the structures were determined using single crystal X-ray diffraction data. The crystal structures of [Zn(O(3)P-C(3)H(6)-NH(2))]·H(2)O (3) (monoclinic, P2(1)/c, a = 9.094(2) ?, b = 5.0118(7) ?, c = 16.067(4) ?, β = 90.38(2)°, V = 732.3(2) ?(3), Z = 4) and Zn(O(3)P-C(4)H(8)-NH(2)) (5) (monoclinic, P2(1)/c, a = 8.570(7) ?, b = 8.378(4) ?, c = 9.902(6) ?, β = 90.94(5)°, V = 710.9(8) ?(3), Z = 4) were determined using XRPD data. The structural model for compound 6, Zn(O(3)P-C(4)H(8)-NH(3))(NO(3))(H(2)O), was established using lattice parameters from XRPD data and following crystal structure modeling employing force field methods. The structures depend strongly on the alkyl chain length n. For n = 2 and 4 isoreticular compounds are observed, while n = 3 leads to new structures. Larger amounts of all compounds were obtained employing scale-up syntheses in a conventional oven as well as in a microwave reactor system. In addition, in situ energy dispersive X-ray diffraction (EDXRD) experiments at 130 °C were performed at beamline F3 at HASYLAB, DESY, Hamburg, to investigate the formation of compounds 2 and 3 as well as the phase transformation of 2 into 3 upon addition of NaOH. All compounds were characterized in detail using X-ray powder diffraction, IR/Raman spectroscopy, and thermogravimetric and elemental analysis.  相似文献   

19.
Aluminum can undergo hydrolysis in aqueous solutions leading to the formation of soluble molecular clusters, including polynuclear species that range from 1 to 2 nm in diameter. While the behavior of aluminum has been extensively investigated, much less is known about the hydrolysis of more complex mixed-metal systems. This study focuses on the structural characteristics of heterometallic thorium-aluminum molecular species that may have important implications for the speciation of tetravalent actinides in radioactive waste streams and environmental systems. Two mixed metal (Th(4+)/Al(3+)) polynuclear species have been synthesized under ambient conditions and structurally characterized by single-crystal X-ray diffraction. [Th(2)Al(6)(OH)(14)(H(2)O)(12)(hedta)(2)](NO(3))(6)(H(2)O)(12) (ThAl1) crystallizes in space group P2(1)/c with unit cell parameters of a = 11.198(1) ?, b = 14.210(2) ?, c = 23.115(3) ?, and β = 96.375° and [Th(2)Al(8)(OH)(12)(H(2)O)(10)(hdpta)(4)](H(2)O)(21) (ThAl2) was modeled in P1? with a = 13.136(4) ?, b = 14.481(4) ?, c = 15.819(4) ?, α = 78.480(9)°, β = 65.666(8)°, γ = 78.272(8)°. Infrared spectra were collected on both compounds, confirming complexation of the ligand to the metal center, and thermogravimetric analysis indicated that the thermal degradation of these compounds resulted in the formation of an amorphous product at high temperatures. These mixed metal species have topological relationships to previously characterized aluminum-based polynuclear species and may provide insights into the adsorption of tetravalent actinides on colloidal or mineral surfaces.  相似文献   

20.
The syntheses are reported for two novel Tb(3+) heterotrimetallic cyanometallates, K(2)[Tb(H(2)O)(4)(Pt(CN)(4))(2)]Au(CN)(2)·2H(2)O (1) and [Tb(C(10)N(2)H(8))(H(2)O)(4)(Pt(CN)(4))(Au(CN)(2))]·1.5C(10)N(2)H(8)·2H(2)O (2) (C(10)N(2)H(8) = 2,2'-bipyridine). Both compounds have been isolated as colorless crystals, and single-crystal X-ray diffraction has been used to investigate their structural features. Crystallographic data (MoKα, λ = 0.71073 ?, T = 290 K): 1, tetragonal, space group P4(2)/nnm, a = 11.9706(2) ?, c = 17.8224(3) ?, V = 2553.85(7) ?(3), Z = 4; 2, triclinic, space group P1, a = 10.0646(2) ?, b = 10.7649(2) ?, c = 17.6655(3) ?, α = 101.410(2)°, β = 92.067(2)°, γ = 91.196(2)°, V = 1874.14(6) ?(3), Z = 2. For the case of 1, the structure contains Au(2)Pt(4) hexameric noble metal clusters, while 2 includes Au(2)Pt(2) tetrameric clusters. The clusters are alike in that they contain Au-Au and Au-Pt, but not Pt-Pt, metallophilic interactions. Also, the discrete clusters are directly coordinated to Tb(3+) and sensitize its emission in both solid-state compounds, 1 and 2. The Photoluminescence (PL) spectra of 1 show broad excitation bands corresponding to donor groups when monitored at the Tb(3+) ion f-f transitions, which is typical of donor/acceptor energy transfer (ET) behavior in the system. The compound also displays a broad emission band at ~445 nm, assignable to a donor metal centered (MC) emission of the Au(2)Pt(4) clusters. The PL properties of 2 show a similar Tb(3+) emission in the visible region and a lack of donor-based emission at room temperature; however, at 77 K a weak, broad emission occurs at 400 nm, indicative of uncoordinated 2,2'-bipyridine, along with strong Tb(3+) transitions. The absolute quantum yield (QY) for the Tb(3+) emission ((5)D(4) → (7)F(J (J = 6-3))) in 1 is 16.3% with a lifetime of 616 μs when excited at 325 nm. In contrast the weak MC emission at 445 nm has a quantum yield of 0.9% with a significantly shorter lifetime of 0.61 μs. For 2 the QY value decreases to 9.3% with a slightly shorter lifetime of 562 μs. The reduced QY in 2 is considered to be a consequence of (1) the slightly increased donor-acceptor excited energy gap relative to the optimal gap suggested for Tb(3+) and (2) Tb(3+) emission quenching via a bpy ligand-to-metal charge transfer (LMCT) excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号