首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Upward spreading of masking, measured in terms of absolute masked threshold, is greater in hearing-impaired listeners than in listeners with normal hearing. The purpose of this study was to make further observations on upward-masked thresholds and speech recognition in noise in elderly listeners. Two age groups were used: One group consisted of listeners who were more than 60 years old, and the second group consisted of listeners who were less than 36 years old. Both groups had listeners with normal hearing as well as listeners with mild to moderate sensorineural loss. The masking paradigm consisted of a continuous low-pass-filtered (1000-Hz) noise, which was mixed with the output of a self-tracking, sweep-frequency Bekesy audiometer. Thresholds were measured in quiet and with maskers at 70 and 90 dB SPL. The upward-masked thresholds were similar for young and elderly hearing-impaired listeners. A few elderly listeners had lower upward-masked thresholds compared with the young control group; however, their on-frequency masked thresholds were nearly identical to the control group. A significant correlation was found between upward-masked thresholds and the Speech Perception in Noise (SPIN) test in elderly listeners.  相似文献   

2.
This study investigated the effect of mild-to-moderate sensorineural hearing loss on the ability to identify speech in noise for vowel-consonant-vowel tokens that were either unprocessed, amplitude modulated synchronously across frequency, or amplitude modulated asynchronously across frequency. One goal of the study was to determine whether hearing-impaired listeners have a particular deficit in the ability to integrate asynchronous spectral information in the perception of speech. Speech tokens were presented at a high, fixed sound level and the level of a speech-shaped noise was changed adaptively to estimate the masked speech identification threshold. The performance of the hearing-impaired listeners was generally worse than that of the normal-hearing listeners, but the impaired listeners showed particularly poor performance in the synchronous modulation condition. This finding suggests that integration of asynchronous spectral information does not pose a particular difficulty for hearing-impaired listeners with mild/moderate hearing losses. Results are discussed in terms of common mechanisms that might account for poor speech identification performance of hearing-impaired listeners when either the masking noise or the speech is synchronously modulated.  相似文献   

3.
Frequency resolution (viz., masking by low-pass-filtered noise and broadband noise) and temporal resolution (viz., masking by interrupted noise) were compared with hearing thresholds and acoustic reflex thresholds for four normally hearing and 13 cochlearly impaired subjects. Two models, one for frequency resolution (model I) and one for temporal resolution (model II), were introduced, and these provided a means of predicting individual frequency and temporal resolution from hearing thresholds for both normal-hearing and hearing-impaired listeners. Model I is based on the assumption that the upward spread of masking increases in cochlearly impaired hearing with an amount proportional to the hearing threshold in dB HL. Model II is based on the assumption that the poststimulatory masked thresholds return to the level of the hearing threshold within a duration of 200 ms, independent of the level of the masker and the amount of cochlear hearing loss. Model parameters were determined from results from other studies. Although some discrepancies between measured and predicted values were observed, the model predictions generally agree with measurements. Thus, to a first-order approximation, it seems possible to predict individual frequency and temporal resolution of cochlearly hearing-impaired listeners solely on the basis of their hearing thresholds.  相似文献   

4.
Speech-reception thresholds (SRT) were measured for 17 normal-hearing and 17 hearing-impaired listeners in conditions simulating free-field situations with between one and six interfering talkers. The stimuli, speech and noise with identical long-term average spectra, were recorded with a KEMAR manikin in an anechoic room and presented to the subjects through headphones. The noise was modulated using the envelope fluctuations of the speech. Several conditions were simulated with the speaker always in front of the listener and the maskers either also in front, or positioned in a symmetrical or asymmetrical configuration around the listener. Results show that the hearing impaired have significantly poorer performance than the normal hearing in all conditions. The mean SRT differences between the groups range from 4.2-10 dB. It appears that the modulations in the masker act as an important cue for the normal-hearing listeners, who experience up to 5-dB release from masking, while being hardly beneficial for the hearing impaired listeners. The gain occurring when maskers are moved from the frontal position to positions around the listener varies from 1.5 to 8 dB for the normal hearing, and from 1 to 6.5 dB for the hearing impaired. It depends strongly on the number of maskers and their positions, but less on hearing impairment. The difference between the SRTs for binaural and best-ear listening (the "cocktail party effect") is approximately 3 dB in all conditions for both the normal-hearing and the hearing-impaired listeners.  相似文献   

5.
Temporal processing ability in the hearing impaired was investigated in a 2IFC gap-detection paradigm. The stimuli were digitally constructed 50-Hz-wide bands of noise centered at 250, 500, and 1000 Hz. On each trial, two 400-ms noise samples were paired, shaped at onset and offset, filtered, and presented in the quiet with and without a temporal gap. A modified up-down procedure with trial-by-trial feedback was used to establish threshold of detection of the gap. Approximately 4 h of practice preceded data collection; final estimate of threshold was the average of six listening blocks. There were 10 listeners, 19-25 years old. Five had normal hearing; five had a moderate congenital sensorineural hearing loss with relatively flat audiometric configuration. Near threshold (5 dB SL), all listeners performed similarly. At 15 and 25 dB SL, the normal-hearing group performed better than the hearing-impaired group. At 78 dB SPL, equal to the average intensity of the 5-dB SL condition for the hearing impaired, the normal-hearing group continued to improve and demonstrated a frequency effect not seen in the other conditions. Substantial individual differences were found in both groups, though intralistener variability was as small as expected for these narrow-bandwidth signals.  相似文献   

6.
The speech-reception threshold (SRT) for sentences presented in a fluctuating interfering background sound of 80 dBA SPL is measured for 20 normal-hearing listeners and 20 listeners with sensorineural hearing impairment. The interfering sounds range from steady-state noise, via modulated noise, to a single competing voice. Two voices are used, one male and one female, and the spectrum of the masker is shaped according to these voices. For both voices, the SRT is measured as well in noise spectrally shaped according to the target voice as shaped according to the other voice. The results show that, for normal-hearing listeners, the SRT for sentences in modulated noise is 4-6 dB lower than for steady-state noise; for sentences masked by a competing voice, this difference is 6-8 dB. For listeners with moderate sensorineural hearing loss, elevated thresholds are obtained without an appreciable effect of masker fluctuations. The implications of these results for estimating a hearing handicap in everyday conditions are discussed. By using the articulation index (AI), it is shown that hearing-impaired individuals perform poorer than suggested by the loss of audibility for some parts of the speech signal. Finally, three mechanisms are discussed that contribute to the absence of unmasking by masker fluctuations in hearing-impaired listeners. The low sensation level at which the impaired listeners receive the masker seems a major determinant. The second and third factors are: reduced temporal resolution and a reduction in comodulation masking release, respectively.  相似文献   

7.
Auditory filter nonlinearity in mild/moderate hearing impairment   总被引:1,自引:0,他引:1  
Sensorineural hearing loss has frequently been shown to result in a loss of frequency selectivity. Less is known about its effects on the level dependence of selectivity that is so prominent a feature of normal hearing. The aim of the present study is to characterize such changes in nonlinearity as manifested in the auditory filter shapes of listeners with mild/moderate hearing impairment. Notched-noise masked thresholds at 2 kHz were measured over a range of stimulus levels in hearing-impaired listeners with losses of 20-50 dB. Growth-of-masking functions for different notch widths are more parallel for hearing-impaired than for normal-hearing listeners, indicating a more linear filter. Level-dependent filter shapes estimated from the data show relatively little change in shape across level. The loss of nonlinearity is also evident in the input/output functions derived from the fitted filter shapes. Reductions in nonlinearity are clearly evident even in a listener with only 20-dB hearing loss.  相似文献   

8.
In the present study, speech-recognition performance was measured in four hearing-impaired subjects and twelve normal hearers. The normal hearers were divided into four groups of three subjects each. Speech-recognition testing for the normal hearers was accomplished in a background of spectrally shaped noise in which the noise was shaped to produce masked thresholds identical to the quiet thresholds of one of the hearing-impaired subjects. The question addressed in this study is whether normal hearers with a hearing loss simulated through a shaped masking noise demonstrate speech-recognition difficulties similar to those of listeners with actual hearing impairment. Regarding overall percent-correct scores, the results indicated that two of the four hearing-impaired subjects performed better than their corresponding subgroup of noise-masked normal hearers, whereas the other two impaired listeners performed like the noise-masked normal listeners. A gross analysis of the types of errors made suggested that subjects with actual and simulated losses frequently made different types of errors.  相似文献   

9.
The bandwidths for summation at threshold were measured for subjects with normal hearing and subjects with sensorineural hearing loss. Thresholds in quiet and in the presence of a masking noise were measured for complex stimuli consisting of 1 to 40 pure-tone components spaced 20 Hz apart. The single component condition consisted of a single pure tone at 1100 Hz; additional components were added below this frequency, in a replication of the G?ssler [Acustica 4, 408-414 (1954)] procedure. For the normal subjects, thresholds increased approximately 3 dB per doubling of bandwidth for signal bandwidths exceeding the critical bandwidth. This slope was less for the hearing-impaired subjects. Summation bandwidths, as estimated from two-line fits, were wider for the hearing-impaired than for the normal subjects. These findings provide evidence that hearing-impaired subjects integrate sound energy over a wider-than-normal frequency range for the detection of complex signals. A second experiment used stimuli similar to those of Spiegel [J. Acoust. Soc. Am. 66, 1356-1363 (1979)], and added components both above and below the frequency of the initial component. Using these stimuli, the slope of the threshold increase beyond the critical bandwidth was approximately 1.5 dB per doubling of bandwidth, thus replicating the Spiegel (1979) experiment. It is concluded that the differences between the G?ssler (1954) and Spiegel (1979) studies were due to the different frequency content of the stimuli used in each study. Based upon the present results, it would appear that the slope of threshold increase is dependent upon the direction of signal expansion, and the size of the critical bands into which the signal is expanded.  相似文献   

10.
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal modulation transfer functions (TMTFs) for nine listeners with mild to profound sensorineural hearing loss. Each hearing loss was simulated in a group of three age-matched normal-hearing listeners through spectrally shaped masking noise or a combination of masking noise and multiband expansion. TMTFs were measured for both groups of listeners using a broadband noise carrier as a function of modulation rate in the range 2 to 1024 Hz. The TMTFs were fit with a lowpass filter function that provided estimates of overall modulation-depth sensitivity and modulation cutoff frequency. Although the simulations were capable of accurately reproducing the threshold elevations of the hearing-impaired listeners, they were not successful in reproducing the TMTFs. On average, the simulations resulted in lower sensitivity and higher cutoff frequency than were observed in the TMTFs of the hearing-impaired listeners. Discrepancies in performance between listeners with real and simulated hearing loss are possibly related to inaccuracies in the simulation of recruitment.  相似文献   

11.
Eight normal listeners and eight listeners with sensorineural hearing losses were compared on a gap-detection task and on a speech perception task. The minimum detectable gap (71% correct) was determined as a function of noise level, and a time constant was computed from these data for each listener. The time constants of the hearing-impaired listeners were significantly longer than those of the normal listeners. The speech consisted of sentences that were mixed with two levels of noise and subjected to two kinds of reverberation (real or simulated). The speech thresholds (minimum signal-to-noise ratio for 50% correct) were significantly higher for the hearing-impaired listeners than for the normal listeners for both kinds of reverberation. The longer reverberation times produced significantly higher thresholds than the shorter times. The time constant was significantly correlated with all the speech threshold measures (r = -0.58 to -0.74) and a measure of hearing threshold loss also correlated significantly with all the speech thresholds (r = 0.53 to 0.95). A principal components analysis yielded two factors that accounted for the intercorrelations. The factor loadings for the time constant were similar to those on the speech thresholds for real reverberation and the loadings for hearing loss were similar to those of the thresholds for simulated reverberation.  相似文献   

12.
Thresholds of ongoing interaural time difference (ITD) were obtained from normal-hearing and hearing-impaired listeners who had high-frequency, sensorineural hearing loss. Several stimuli (a 500-Hz sinusoid, a narrow-band noise centered at 500 Hz, a sinusoidally amplitude-modulated 4000-Hz tone, and a narrow-band noise centered at 4000 Hz) and two criteria [equal sound-pressure level (Eq SPL) and equal sensation level (Eq SL)] for determining the level of stimuli presented to each listener were employed. The ITD thresholds and slopes of the psychometric functions were elevated for hearing-impaired listeners for the two high-frequency stimuli in comparison to: the listener's own low-frequency thresholds; and data obtained from normal-hearing listeners for stimuli presented with Eq SPL interaurally. The two groups of listeners required similar ITDs to reach threshold when stimuli were presented at Eq SLs to each ear. For low-frequency stimuli, the ITD thresholds of the hearing-impaired listener were generally slightly greater than those obtained from the normal-hearing listeners. Whether these stimuli were presented at either Eq SPL or Eq SL did not differentially affect the ITD thresholds across groups.  相似文献   

13.
Temporal masking curves were obtained from 12 normal-hearing and 16 hearing-impaired listeners using 200-ms, 1000-Hz pure-tone maskers and 20-ms, 1000-Hz fixed-level probe tones. For the delay times used here (greater than 40 ms), temporal masking curves obtained from both groups can be well described by an exponential function with a single level-independent time constant for each listener. Normal-hearing listeners demonstrated time constants that ranged between 37 and 67 ms, with a mean of 50 ms. Most hearing-impaired listeners, with significant hearing loss at the probe frequency, demonstrated longer time constants (range 58-114 ms) than those obtained from normal-hearing listeners. Time constants were found to grow exponentially with hearing loss according to the function tau = 52e0.011(HL), when the slope of the growth of masking is unity. The longest individual time constant was larger than normal by a factor of 2.3 for a hearing loss of 52 dB. The steep slopes of the growth of masking functions typically observed at long delay times in hearing-impaired listeners' data appear to be a direct result of longer time constants. When iterative fitting procedures included a slope parameter, the slopes of the growth of masking from normal-hearing listeners varied around unity, while those from hearing-impaired listeners tended to be less (flatter) than normal. Predictions from the results of these fixed-probe-level experiments are consistent with the results of previous fixed-masker-level experiments, and they indicate that deficiencies in the ability to detect sequential stimuli should be considerable in hearing-impaired listeners, partially because of extended time constants, but mostly because forward masking involves a recovery process that depends upon the sensory response evoked by the masking stimulus. Large sensitivity losses reduce the sensory response to high SPL maskers so that the recovery process is slower, much like the recovery process for low-level stimuli in normal-hearing listeners.  相似文献   

14.
An articulation index calculation procedure developed for use with individual normal-hearing listeners [C. Pavlovic and G. Studebaker, J. Acoust. Soc. Am. 75, 1606-1612 (1984)] was modified to account for the deterioration in suprathreshold speech processing produced by sensorineural hearing impairment. Data from four normal-hearing and four hearing-impaired subjects were used to relate the loss in hearing sensitivity to the deterioration in speech processing in quiet and in noise. The new procedure only requires hearing threshold measurements and consists of the following two modifications of the original AI procedure of Pavlovic and Studebaker (1984): The speech and noise spectrum densities are integrated over bandwidths which are, when expressed in decibels, larger than the critical bandwidths by 10% of the hearing loss. This is in contrast to the unmodified procedure where integration is performed over critical bandwidths. The contribution of each frequency to the AI is the product of its contribution in the unmodified AI procedure and a "speech desensitization factor." The desensitization factor is specified as a function of the hearing loss. The predictive accuracies of both the unmodified and the modified calculation procedures were assessed by comparing the expected and observed speech recognition scores of four hearing-impaired subjects under various conditions of speech filtering and noise masking. The modified procedure appears accurate for general applications. In contrast, the unmodified procedure appears accurate only for applications where results obtained under various conditions on a single listener are compared to each other.  相似文献   

15.
The purpose of the present study was to examine the benefits of providing audible speech to listeners with sensorineural hearing loss when the speech is presented in a background noise. Previous studies have shown that when listeners have a severe hearing loss in the higher frequencies, providing audible speech (in a quiet background) to these higher frequencies usually results in no improvement in speech recognition. In the present experiments, speech was presented in a background of multitalker babble to listeners with various severities of hearing loss. The signal was low-pass filtered at numerous cutoff frequencies and speech recognition was measured as additional high-frequency speech information was provided to the hearing-impaired listeners. It was found in all cases, regardless of hearing loss or frequency range, that providing audible speech resulted in an increase in recognition score. The change in recognition as the cutoff frequency was increased, along with the amount of audible speech information in each condition (articulation index), was used to calculate the "efficiency" of providing audible speech. Efficiencies were positive for all degrees of hearing loss. However, the gains in recognition were small, and the maximum score obtained by an listener was low, due to the noise background. An analysis of error patterns showed that due to the limited speech audibility in a noise background, even severely impaired listeners used additional speech audibility in the high frequencies to improve their perception of the "easier" features of speech including voicing.  相似文献   

16.
Modeling sensorineural hearing loss. I. Model and retrospective evaluation   总被引:1,自引:0,他引:1  
The present article describes an approach to the evaluation of psychoacoustic data from the hearing impaired. The results obtained from the hearing impaired in several studies of frequency resolution, temporal resolution, and speech recognition are compared to the results expected for noise-masked normal listeners. It is presumed in this approach that the hypothetical noise-masked normal listeners have masked thresholds that agree perfectly with the quiet thresholds of the hearing-impaired subjects. Using this approach, most of the results obtained from impaired ears on spectral-resolution and speech-recognition tasks could be accurately predicted, an exception being results from spectral-resolution paradigms using fixed-level signals. Some of the data from hearing-impaired listeners on temporal-resolution tasks, on the other hand, could not be adequately described with this approach. The latter data, however, were much more limited. Additional data are needed to better evaluate the adequacy of this approach in describing the performance of the hearing impaired on temporal-resolution tasks.  相似文献   

17.
Psychophysical estimates of cochlear function suggest that normal-hearing listeners exhibit a compressive basilar-membrane (BM) response. Listeners with moderate to severe sensorineural hearing loss may exhibit a linearized BM response along with reduced gain, suggesting the loss of an active cochlear mechanism. This study investigated how the BM response changes with increasing hearing loss by comparing psychophysical measures of BM compression and gain for normal-hearing listeners with those for listeners who have mild to moderate sensorineural hearing loss. Data were collected from 16 normal-hearing listeners and 12 ears from 9 hearing-impaired listeners. The forward masker level required to mask a fixed low-level, 4000-Hz signal was measured as a function of the masker-signal interval using a masker frequency of either 2200 or 4000 Hz. These plots are known as temporal masking curves (TMCs). BM response functions derived from the TMCs showed a systematic reduction in gain with degree of hearing loss. Contrary to current thinking, however, no clear relationship was found between maximum compression and absolute threshold.  相似文献   

18.
This investigation examined whether listeners with mild-moderate sensorineural hearing impairment have a deficit in the ability to integrate synchronous spectral information in the perception of speech. In stage 1, the bandwidth of filtered speech centered either on 500 or 2500 Hz was varied adaptively to determine the width required for approximately 15%-25% correct recognition. In stage 2, these criterion bandwidths were presented simultaneously and percent correct performance was determined in fixed block trials. Experiment 1 tested normal-hearing listeners in quiet and in masking noise. The main findings were (1) there was no correlation between the criterion bandwidths at 500 and 2500 Hz; (2) listeners achieved a high percent correct in stage 2 (approximately 80%); and (3) performance in quiet and noise was similar. Experiment 2 tested listeners with mild-moderate sensorineural hearing impairment. The main findings were (1) the impaired listeners showed high variability in stage 1, with some listeners requiring narrower and others requiring wider bandwidths than normal, and (2) hearing-impaired listeners achieved percent correct performance in stage 2 that was comparable to normal. The results indicate that listeners with mild-moderate sensorineural hearing loss do not have an essential deficit in the ability to integrate across-frequency speech information.  相似文献   

19.
This study examined the effects of mild-to-moderate sensorineural hearing loss on vowel perception abilities of young, hearing-impaired (YHI) adults. Stimuli were presented at a low conversational level with a flat frequency response (approximately 60 dB SPL), and in two gain conditions: (a) high level gain with a flat frequency response (95 dB SPL), and (b) frequency-specific gain shaped according to each listener's hearing loss (designed to simulate the frequency response provided by a linear hearing aid to an input signal of 60 dB SPL). Listeners discriminated changes in the vowels /I e E inverted-v ae/ when F1 or F2 varied, and later categorized the vowels. YHI listeners performed better in the two gain conditions than in the conversational level condition. Performances in the two gain conditions were similar, suggesting that upward spread of masking was not seen at these signal levels for these tasks. Results were compared with those from a group of elderly, hearing-impaired (EHI) listeners, reported in Coughlin, Kewley-Port, and Humes [J. Acoust. Soc. Am. 104, 3597-3607 (1998)]. Comparisons revealed no significant differences between the EHI and YHI groups, suggesting that hearing impairment, not age, is the primary contributor to decreased vowel perception in these listeners.  相似文献   

20.
Effects of age and mild hearing loss on speech recognition in noise   总被引:5,自引:0,他引:5  
Using an adaptive strategy, the effects of mild sensorineural hearing loss and adult listeners' chronological age on speech recognition in babble were evaluated. The signal-to-babble ratio required to achieve 50% recognition was measured for three speech materials presented at soft to loud conversational speech levels. Four groups of subjects were tested: (1) normal-hearing listeners less than 44 years of age, (2) subjects less than 44 years old with mild sensorineural hearing loss and excellent speech recognition in quiet, (3) normal-hearing listeners greater than 65 with normal hearing, and (4) subjects greater than 65 years old with mild hearing loss and excellent performance in quiet. Groups 1 and 3, and groups 2 and 4 were matched on the basis of pure-tone thresholds, and thresholds for each of the three speech materials presented in quiet. In addition, groups 1 and 2 were similar in terms of mean age and age range, as were groups 3 and 4. Differences in performance in noise as a function of age were observed for both normal-hearing and hearing-impaired listeners despite equivalent performance in quiet. Subjects with mild hearing loss performed significantly worse than their normal-hearing counterparts. These results and their implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号