首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO thin films were grown on (111) CaF2 substrates by magnetron sputtering at room temperature. Structural and optical properties of the ZnO thin films were studied. XRD analysis showed that the ZnO thin films had the (002) preferential orientation. The transmittance of ZnO thin films was over 80% in the visible range. The optical band gap of the ZnO thin films was 3.26 eV. The optical constants (n,k)(n,k) of the ZnO thin films in the wavelength range 300–1000 nm were obtained by infrared spectroscopic ellipsometry measurement. PL spectra of ZnO thin films showed strong UV near-band-edge emission peak at 376.5 nm and weak visible red emission at 643.49 nm using He–Cd laser as the light source, using a synchrotron radiation light source PL spectra showed three emission peak at 320 nm, 410 nm and 542 nm respectively.  相似文献   

2.
In this paper, the experimental results regarding some structural, electrical and optical properties of ZnO thin films prepared by thermal oxidation of metallic Zn thin films are presented.Zn thin films (d=200–400 nm) were deposited by thermal evaporation under vacuum, onto unheated glass substrates, using the quasi-closed volume technique. In order to obtain ZnO films, zinc-coated glass substrates were isochronally heated in air in the 300–660 K temperature range, for thermal oxidation.X-ray diffraction (XRD) studies revealed that the ZnO films obtained present a randomly oriented hexagonal nanocrystalline structure. Depending on the heating temperature of the Zn films, the optical transmittance of the ZnO films in the visible wavelength range varied from 85% to 95%. The optical band gap of the ZnO films was found to be about 3.2 eV. By in situ studying of the temperature dependence of the electrical conductivity during the oxidation process, the value of about 2×10−2 Ω−1 m−1 was found for the conductivity of completely oxidized ZnO films.  相似文献   

3.
Ternary ZnCdO thin films oriented along c-axis have been successfully deposited on p-Si (1 0 0) substrates using sol–gel spin coating route. To optimize most suitable annealing temperature for the Zn1−xCdxO thin films; these films with selected cadmium content x = 0.10 were treated at annealing temperatures from 300 °C up to 800 °C in oxygen ambient after deposition. The structural and optical properties of deposited thin films have been characterized by X-ray diffraction, energy dispersive spectroscopy, atomic force microscopy, UV–Vis spectroscopy, and photoluminescence spectra. The results show that the obtained films possess high crystallinity with wurtzite structure. The crystallite size, lattice parameters, lattice strain and stress in the deposited films are determined from X-ray diffraction analysis. The band gap energy increased as a function of annealing temperatures as observed from optical reflectance spectra of samples. The presence of Cd in the deposited films is confirmed by energy dispersive spectrum and it is observed that Cd re-evaporate from the lattice with annealing. The photoluminescence measurements as performed at room temperature did not exhibit any luminescence related to oxygen vacancies defects for lower annealing temperatures, as normally displayed by ZnO films. The green yellow luminescence associated to these defects was observed at higher annealing temperatures (≥700 °C).  相似文献   

4.
Tin oxide (SnO2) thin films have been grown on glass substrates using atmospheric pressure chemical vapour deposition (APCVD) method. During the deposition, the substrate temperature was kept at 400°C–500°C. The structural properties, surface morphology and chemical composition of the deposited film were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and Rutherford back scattering (RBS) spectrum. XRD pattern showed that the preferred orientation was (110) having tetragonal structure. The optical properties of the films were studied by measuring the transmittance, absorbance and reflectance spectra between λ = 254 nm to 1400 nm and the optical constants were calculated. Typical SnO2 film transmits ∼ 94% of visible light. The electrical properties of the films were studied using four-probe method and Hall-voltage measurement experiment. The films showed room temperature conductivity in the range 1.08 × 102 to 1.69 × 102 Ω−1cm−1.  相似文献   

5.
Intrinsic epitaxial zinc oxide (epi-ZnO) thin films were grown by laser-molecular beam epitaxy (L-MBE), i.e., pulsed laser deposition (PLD) technique using Johnson Matthey “specpure”-grade ZnO pellets. The effects of substrate temperatures on ZnO thin film growth, electrical conductivity (σ), mobility (μ) and carrier concentration (n) were studied. As well as the feasibility of developing high quality conducting oxide thin films was also studied simultaneously. The highest conductivity was found for optimized epi-ZnO thin films is σ=0.06×103 ohm−1 cm−1 (n-type) (which is almost at the edge of semiconductivity range), carrier density n=0.316×1019 cm−3 and mobility μ=98 cm2/V s. The electrical studies further confirmed the semiconductor characteristics of epi-n-ZnO thin films. The relationship between the optical and electrical properties were also graphically enumerated. The electrical parameter values for the films were calculated, graphically enumerated and tabulated. As a novelty point of view, we have concluded that without doping and annealing, we have obtained optimum electrical conductivity with high optical transparency (95%) for as deposited ZnO thin films using PLD. Also, this is the first time that we have applied PLD made ZnO thin films to iso-, hetero-semiconductor–insulator–semiconductor (SIS) type solar cells as transparent conducting oxide (TCO) window layer. We hope that surely these data be helpful either as a scientific or technical basis in the semiconductor processing.  相似文献   

6.
Amorphous gallium nitride (a-GaN) thin films were deposited on glass substrate by electron beam evaporation technique at room temperature and high vacuum using N 2 as carrier gas. The structural properties of the films was studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). It was clear from XRD spectra and SEM study that the GaN thin films were amorphous. The absorbance, transmittance and reflectance spectra of these films were measured in the wavelength range of 300–2200 nm. The absorption coefficient spectral analysis in the sharp absorption region revealed a direct band gap of E g = 3:1 eV. The data analysis allowed the determination of the dispersive optical parameters by calculating the refractive index. The oscillator energy E 0 and the dispersion energy E d, which is a measure of the average strength of inter-band optical transition or the oscillator strength, were determined. Electrical conductivity of a-GaN was measured in a different range of temperatures. Then, activation energy of a-GaN thin films was calculated which equalled E a = 0:434 eV.  相似文献   

7.
Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films were prepared by an easy and cost effective dip coating method. Al/PVA–TiO2/Al and Al/PMMA–TiO2/Al sandwich structures were prepared to study the dielectric behavior. The presence of metal–oxide (Ti–O) bond in the prepared films was confirmed by Fourier transform infrared spectroscopy. X-ray diffraction pattern indicated that the prepared films were predominantly amorphous in nature. Scanning electron micrographs showed cluster of TiO2 nanoparticles distributed over the film surface and also there were no cracks and pin holes on the surface. The transmittance of the films was above 80% in the visible region and the optical band gap was estimated to be about 3.77 eV and 3.78 eV respectively for PVA–TiO2 and PMMA–TiO2 films by using Tauc's plot. The determined refractive index (n) values were between 1.6 and 2.3. High value of dielectric constant (?′ = 24.6 and ?′ = 26.8) was obtained for the prepared composite films. The conduction in the composite films was found to be due to electrons. The observed amorphous structure, good optical properties and dielectric behavior of the prepared nano composite thin films indicated that these films could be used in opto-electronic devices and in thin film transistors.  相似文献   

8.

Results of the study of structural and optical properties of Cu2ZnSn(S,Se)4 thin films obtained by sulfitation (selenization) of Cu2ZnSn films which were sputtered by target direct current magnetron sputtering using a stoichiometric Cu2ZnSn (99.99%) target are presented. It has been found that Cu2ZnSn(S,Se)4 thin films are polycrystalline with a grain size of ~60 nm. The optical bandgap of Cu2ZnSnS4 (E op g = 1.65 eV) and Cu2ZnSnSe4 (R op g = 1.2 eV) thin films have been determined.

  相似文献   

9.
ZnSe thin films have been deposited on high cleaned glass substrate by spray pyrolysis technique within the glass substrate temperature range (400 C to 450 C). The structural properties of ZnSe thin films have been investigated by (XRD) X-ray diffraction techniques. The X-ray diffraction spectra showed that ZnSe thin films are polycrystalline and have a cubic (zinc blende) structure. The most preferential orientation is along the (111) direction for all spray deposited ZnSe films together with orientations in the (220) and (311) planes also being abundant. The film thickness was determined by an interferometric method. The lattice parameter, grain size, microstrain and dislocation densities were calculated and correlated with the substrate temperature (TS). The optical properties of ZnSe thin films have been investigated by UV/VIS spectrometer and the direct band gap values were found to be in the region of 2.65 eV to 2.70 eV. The electrical properties of ZnSe thin films have been investigated using the Van der Pauw method and the high quality ZnSe thin films were observed to develop at 430 C with a resistivity of 56,4×105 ohm cm, a conductivity of 1.77×10-7 (Ω cm)-1 and a hall mobility of 0.53 cm2/Vsec.  相似文献   

10.
Tin oxide (SnO2) thin films were deposited by electrostatic spray deposition (ESD). The structural, optical and electrical properties of the films for different solvents were studied. The morphology of the deposited thin films was investigated by scanning electron microscopy. The optical transmission spectra of the films showed 66–75% transmittance in the visible region of spectrum. The electrical resistivity of thin films deposited using the different solvents ranged 1.08 × 10?3–1.34 × 10?3 Ω-cm. Overall, EG and PG were good solvents for depositing SnO2 thin films by the ESD technique with stable cone jet.  相似文献   

11.
An optical inspection system for rapid surface roughness measurement of BiFeO3 (BFO) thin films is developed. It is found that y = 121.45 x + 212.81 is a trend equation for characterizing the surface roughness of BFO thin films. The incident angle of 60 is a good candidate for measuring the surface roughness of BFO thin films. The maximum measurement error rate of the optical inspection system developed is less than 2.6%. The savings in inspection time of the surface roughness of BiFeO3 thin films is up to 90%.  相似文献   

12.
By controlling the oxygen pressure, single-phase CuO and Cu2O thin films have been obtained on quartz substrates using a pulsed laser deposition technique. The structure properties and linear optical absorption of the films were characterized by X-ray diffraction and UV–VIS spectroscopy. By performing z-scan measurements using a femtosecond laser (800 nm, 50 fs), the real and imaginary parts of the third-order nonlinear susceptibility, Re χ (3) and Im χ (3), of the films were determined. Both CuO and Cu2O films exhibited large optical nonlinearities, which is comparable to those in some representative semiconductor films such as ZnO and GaN films using femtosecond laser excitation. Compared with Cu2O films, the CuO films showed larger third-order nonlinear optical effects under off-resonance excitation. Furthermore, the mechanisms of the optical nonlinearities in CuO and Cu2O films are explained in the main text. It was suggested that the reasons of the difference in their nonlinear refractive effects may be related to the different electronic structure in CuO and Cu2O materials.  相似文献   

13.
A novel chalcone derivative, (2E)-1-(2,4-di- chloro-5-fluorophenyl)-3-[4-dimethylamino)phenyl]prop-2-en-1-one, abbreviated as NNDC, was prepared and characterized by elemental analyses, infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectrum, and thermal analyses. The NNDC-doped poly(methyl methacrylate) (PMMA) thin films with five different doping concentrations by weight were prepared by using a spin-coating method. Their linear optical properties were investigated by using a prism coupling measuring system. The third-order nonlinear optical properties of NNDC in 1,2-dichloroethane (NNDC/1,2-dichloroethane) solution and NNDC-doped PMMA (NNDC/PMMA) films were investigated by using the laser Z-scan technique with 20 ps pulses at 532 nm. A self-focusing effect was observed from the Z-scan curves for solution and thin films and the nonlinear refractive index of the film increases with the increase of the doping concentration. In addition, nonlinear absorption was negligible for all samples. The magnitude of third-order nonlinear refraction index n 2 and the third-order nonlinear susceptibility χ (3) for thin films were 10−15 m2/W and 10−9 esu, respectively, which are about three orders larger than that of NNDC/1,2-dichloroethane solution. Some necessary analyses were presented. The results show that this material is a promising candidate for application in the nonlinear optical devices at 532 nm.  相似文献   

14.
Cu2SnS3 thin films were prepared using a simple and phase-controlled two-stage process. Initially, Cu-Sn precursors were deposited by DC sputtering, followed by sulfurization at different temperatures (Ts) that vary in the range, 150 - 500 °C. An exhaustive study of the optical properties in relation to sulfurization temperature was performed using transmission and reflectance measurements. The estimated optical absorption coefficient for all the layers was very high and found to be > 104 cm−1. The optical band gap was determined using Tauc plots and it varied in the range, 1.49–2.34 eV with an increase of Ts. The refractive index (n) and the extinction coefficient (k) were also obtained. The optical properties like dispersion parameters, dielectric constant, dissipation factor, optical conductivity, surface energy loss function, volume energy loss function and optical haze were also calculated. Further, analysis of electrical properties such as electrical resistivity, mobility and carrier density of the prepared films with sulfurization temperature was made in order to verify the suitability of synthesized CTS layers for solar cell application.  相似文献   

15.
The ellipsometric characterizations of amorphous beryllium nitride (a-Be3N2) thin films deposited on Si (1 0 0) and quartz at temperature <50 °C using reactive RF sputtering deposition were examined in the wavelength range 280-1600 nm. X-ray diffraction of the films showed no structure, suggesting the Be3N2 films grown on the substrates are amorphous. The composition and chemical structures of the amorphous thin films were determined by using electron spectroscopy for chemical analysis. The surface morphology of a-Be3N2 was characterized by atomic force microscopy. The thicknesses and optical constants of the films were derived from spectroscopic ellipsometry measurements. The variation of the optical constants with thickness of the deposited films has been investigated. From the angle dependence of the polarized reflectivity we deduced a Brewster angle of 64°. At any angle of incidence, the a-Be3N2 shown high transmissivity (80-99%) and low reflectivity (<18%) in the visible and near infrared regions. Hence, the a-Be3N2 could be a good candidate for antireflection optical coatings under conditions of optimized the type of polarization and the angle of incidence.  相似文献   

16.
Highly transparent and conductive Boron doped zinc oxide (ZnO:B) thin films were deposited using chemical spray pyrolysis (CSP) technique on glass substrate. The effect of variation of boron doping concentration in reducing solution on film properties was investigated. Low angle X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [002] direction. The films with resistivity 2.54×10−3 Ω-cm and optical transmittance >90% were obtained at optimized boron doping concentration. The optical band gap of ZnO:B films was found ∼3.27 eV from the optical transmittance spectra for the as-deposited films. Due to their excellent optical and electrical properties, ZnO:B films are promising contender for their potential use as transparent window layer and electrodes in solar cells.  相似文献   

17.
The preparation process, crystallinity and electrical properties of pulse laser deposited Pb(ZrxTi1−x)O3 (PZT) thin films were investigated in this paper. PZT (x = 0.93) thin film samples deposited at different substrate temperatures were prepared. Si (1 1 0) was the substrate; Ag and YBCO were the top electrode and the bottom electrode respectively. The bottom electrode YBCO was deposited on the Si substrate by pulsed laser deposition (PLD), and then PZT was epitaxially deposited on YBCO also by PLD. After annealing, the top electrode Ag was prepared on PZT by thermal evaporation, and then the Ag/PZT/YBCO/Si structured thin films were obtained. The XRD and the analysis of their electrical characters showed that, when the substrate temperature was elevated from 600 °C to 800 °C, the crystallinity and electrical properties of PZT thin films became better and better, and the FR(LT)FR(HT) phase transition of PZT (x = 0.93) thin films occurred at 62 °C. The PZT film deposited at 800 °C had the best pyroelectric properties, and when the FR(LT)FR(HT) phase transition of this film occurred, the peak value of pyroelectric coefficient (p) was obtained, with a value of 1.96 × 10−6 C/(cm2 K). The PZT film deposited at 800 °C had the highest remnant polarization (Pr) and the lowest coercive field (Ec), with the values of 34.3 μC/cm2 and 41.7 kV/cm respectively.  相似文献   

18.
This paper deals with some physical properties of antimony sulphide Sb2S3 thin films obtained by an annealing process in sulphur vapors at 300 °C of Sb thermal evaporated thin films deposited on glass substrate. The crystal structure and surface morphology were investigated by both XRD and AFM techniques. This structural study shows that Sb2S3 thin films were well crystallized in orthorhombic structure and some parameters such as the lattice parameter, crystallite size, microstrain and degree of preferred orientation have been reported and correlated with the effect of crystallite size. On the other hand, the refractive index and the extinction coefficient were discussed in terms of the Forouhi–Bloomer model. The optical band gap was found to range from 1.75 to 2.23 eV. Finally, the analysis of the optical parameters extracted from the Urbach–Martienssen and Forouhi–Bloomer models lead to some explanations of the correlations between the structural properties in terms of the crystallite size and optical ones.  相似文献   

19.
Nanostructured TiO2 thin films were deposited on quartz glass at room temperature by sol–gel dip coating method. The effects of annealing temperature between 200C to 1100C were investigated on the structural, morphological, and optical properties of these films. The X-ray diffraction results showed that nanostructured TiO2 thin film annealed at between 200C to 600C was amorphous transformed into the anatase phase at 700C, and further into rutile phase at 1000C. The crystallite size of TiO2 thin films was increased with increasing annealing temperature. From atomic force microscopy images it was confirmed that the microstructure of annealed thin films changed from column to nubbly. Besides, surface roughness of the thin films increases from 1.82 to 5.20 nm, and at the same time, average grain size as well grows up from about 39 to 313 nm with increase of the annealing temperature. The transmittance of the thin films annealed at 1000 and 1100C was reduced significantly in the wavelength range of about 300–700 nm due to the change of crystallite phase. Refractive index and optical high dielectric constant of the n-TiO2 thin films were increased with increasing annealing temperature, and the film thickness and the optical band gap of nanostructured TiO2 thin films were decreased.  相似文献   

20.
We investigate the relation between the optical properties and the average molecular tilt angle for blends of pentacene and perfluoropentacene, which can be considered as a prototypical donor–acceptor complex. Combining near‐edge X‐ray absorption fine‐structure spectroscopy and optical spectroscopy we study thin films of these compounds prepared at three different substrate temperatures Tsub. For Tsub =180 K we observe a larger average tilt angle than for blends prepared at higher substrate temperatures. This orientational change has significant impact on the uniaxial anisotropic optical properties of the mixed films which we measure post growth as well as in real‐time during growth. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号