首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Measurements of the electrical resistivity as a function of temperature, ρ(T), for different values of applied magnetic field, Ba (0 ≤ Ba ≤ 50 mT), were performed in polycrystalline samples of Bi1.65Pb0.35Sr2Ca2 Cu3O10+δ subjected to different uniaxial compacting pressure (UCP). We have found appreciable differences in the grain orientation between samples by using X-ray diffractometry. From the X-ray diffraction patterns performed, in powder and pellet samples, we have estimated the Lotgering factor along the (00l) direction, F(00l). The results indicate that F(00l) increases ~23% with increasing UCP suggesting that grains of these samples are preferentially aligned along the c-axis, which is parallel to the compacting direction. The resistive transition of the samples have been interpreted in terms of the thermally activated flux-creep model. In addition, the effective intergranular pinning energy, U0, have been determined for different applied magnetic field. The magnetic field dependence of U0, for Ba > 8 mT, was found to follow a H- α dependence with α = 0.5 for all samples. The analysis of the experimental data strongly suggested that increasing UCP results in appreciable changes in both the grain alignment and the grain connectivity of the samples. We have successfully interpreted the data by considering the existence of three different superconducting levels within the samples: the superconducting grains, the weak-links, and the superconducting clusters.  相似文献   

2.
A heterojunction was fabricated by growing a layer of Bi2Sr2Co2O y thin film on the 0.7 wt% Nb-doped SrTiO3 substrate. Such heterojunction showed good rectifying characteristics over a wide temperature range, and its transport mechanism under the forward bias can be attributed to a space charge limited conduction mechanism via defects near the interface of the heterojunction. Photovoltaic properties of the heterojunction were studied by using both continuous-wave and pulsed irradiations and the results can be well explained by the photovoltaic effect of a p–n junction.  相似文献   

3.
Highly c-axis-oriented Sr3Bi4Ti6O21 (SBTi) thin films were fabricated on Pt-coated Si substrates by pulsed laser deposition (PLD). The structures were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). No peaks of SrTiO3 (STO) could be detected in the XRD pattern, indicating the existence of the SBTi single phase. Good ferroelectric hysteresis loops of the films with Pt electrodes were obtained. With an applied field of 400 kV/cm, the measured remanent polarization (Pr) and coercive field (Ec) values were 4.1 C/cm2 and 75 kV/cm respectively. The films showed little fatigue after 2.22×109 switching cycles: the nonvolatile polarizations decreased by less than 5% of the initial values. The dielectric constant and the loss tangent of the films were measured to be 363 and 0.04 at 100 kHz. These results might be advantageous for nonvolatile ferroelectric random access memory (NVFRAM) and dynamic random access memory (DRAM). PACS 77.84.Dy; 77.22.-d; 68.55.Jk  相似文献   

4.
A novel morphology of Bi2O3 nanomaterial (nanosquaresheets) has been successfully synthesized in large area by thermal evaporation of commercial Bi2O3 powder at high temperatures. The Bi2O3 nanosquaresheets (NSSs) are perfect regular squares and have sharp, uniform edges. The typical length of the sides is in the range of 200–600 nm. The thickness varies from 30 to 100 nm. Electron microscopy observations show that the Bi2O3 NSSs are single crystalline. The growth of Bi2O3 NSSs is probably controlled by a vapor–solid mechanism. The dominate growth directions are [2̄10] and [1̄2̄2] within the (245) planes. PACS 81.05.Hd; 81.10.Bk; 81.16.Be  相似文献   

5.
The formation of thermal and electrodynamic states in Bi2Sr2CaCu2O8 under the condition of current input is studied. The analysis is carried out for partial and complete current penetration under the assumption that the superconductor is cooled down to liquid helium temperature at the zero time. When the current input is continuous, the temperature dependence of the Bi2Sr2CaCu2O8 specific heat influences the form of the I-V and I-T characteristics of the superconductor. This effect is observed at high electric fields when both stable and unstable states form. As a result, the nonstationary I-V characteristic of Bi2Sr2CaCu2O8 has the only branch the slope of which is positive and decreases with increasing temperature. Therefore, the higher the rate of current input, the more pronounced the decrease in the slope. It is concluded that one cannot find the current above which instability develops from the Bi2Sr2CaCu2O8 I-V characteristic if the current input is continuous.  相似文献   

6.
Time-resolved magneto-optical imaging measurements show that an ac current enables the vortex matter in YBa2Cu3O7-x thin films to reorganize into two coexisting steady states of driven vortex motion with different characteristics: a quasi-static disordered glassy state in the sample interior and a dynamic state of plastic motion near the edges. Finite-element calculations consistent with the critical state model show good agreement with the measured field profiles in the quasi-static state but predict a larger hysteretic behavior in the dynamic state. PACS 74.25.Qt; 74.25.Ha; 74.25.Sv; 74.78.Bz  相似文献   

7.
Crystals of Ca3NbGa3Si2O14 (CNGS) with ordered langasite structure were grown using the Czochralski method along the Cartesian X axis [110]. The as-grown crystals exhibit high optical quality and structure perfection. Optical activities were obtained by measuring polarised transmission at various wavelengths between crossed polarisers using a TU-1900 spectrophotometer and we found that CNGS crystals showed very large values of . PACS 81.10.-h; 42.79.Ci; 78.20.Ek  相似文献   

8.
Nonstoichiometric Bi2WO6 photocatalyst with the composition of Bi2?+?x WO6?+?1.5x (?0.25 ≤ x ≤ 1) wa synthesized by a facile solid state reaction method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis absorption spectrum. The Bi2.5WO6.75 photocatalyst showed excellent visible-light-driven photocatalytic performance; nearly 100 % of RhB (10 ppm, pH?=?3?~?4) was decomposed within 25 min, which demonstrated that nonstoichiometric semiconductors could be an efficient visible-light-driven photocatalyst.  相似文献   

9.
The magnetic structure of the Sr2Cu3O4Cl2 two-subsystem antiferromagnet is studied by the nuclear quadrupole resonance (NQR) method on the 63, 65Cu and 35Cl nuclei. The resonance spectrum above T N2 = 40 K is determined by the Zeeman splitting of the levels of the 63, 65Cu nuclei of the copper atoms at the Cu1 site with the first-order quadrupole perturbation. The magnetic field on the copper nuclei is equal to 93 kOe. The spectrum below n is significantly different: it includes a low-frequency part, which is associated with the ordering of the second magnetic subsystem Cu2. The splitting of the NQR lines of 35Cl is observed above and below T N2. This fact indicates the ferromagnetic ordering of the moments of the Cu1 subsystem, which are located along the c axis of the crystal, and makes it possible to determine the direction of the magnetic field on Cu1 copper as (110).  相似文献   

10.
Pseudogap phenomena are observed for the normal underdoped phase of different high-T c cuprates. Among others, the Bi2Sr2CaCu2O8 − δ (Bi2212) compound is one of the most studied experimentally. To describe the pseudogap regime in Bi2212, we use a novel generalized ab initio LDA + DMFT + Σk hybrid scheme. This scheme is based on the strategy of one of the most powerful computational tools for real correlated materials: the local density approximation (LDA) + dynamical mean-field theory (DMFT). Conventional LDA + DMFT equations are here supplied with an additional (momentum-dependent) self-energy Σk in the spirit of our recently proposed DMFT + Σk approach taking into account pseudogap fluctuations. In the present model, Σk describes nonlocal correlations induced by short-range collective Heisenberg-like antiferromagnetic spin fluctuations. The effective single-impurity problem of the DMFT is solved by the numerical renormalization group (NRG) method. Material-specific model parameters for the effective x 2y 2 orbital of Cu-3d shell of the Bi2212 compound, e.g., the values of intra-and interlayer hopping integrals between different Cu sites, the local Coulomb interaction U, and the pseudogap potential Δ were obtained within the LDA and LDA + DMFT schemes. Here, we report on the theoretical LDA + DMFT + Σk quasiparticle band dispersion and damping, Fermi surface renormalization, momentum anisotropy of (quasi)static scattering, densities of states, spectral densities, and angular-resolved photoemission (ARPES) spectra, taking into account pseudogap and bilayer splitting effects for normal (slightly) underdoped Bi2212 (δ = 0.15). We show that LDA + DMFT + Σk successfully describes strong (pseudogap) scattering close to Brillouin zone boundaries. Our calculated LDA + DMFT + Σk Fermi surfaces and ARPES spectra in the presence of pseudogap fluctuations are almost insensitive to the bilayer splitting strength. However, our LDA-calculated value of bilayer splitting is rather small to describe the experimentally observed peak-dip-hump structure. The results obtained are in good semiquantitative agreement with various recent ARPES experiments. The article was submitted by the authors in English.  相似文献   

11.
12.
This paper reports on the results of measurements of the magnetic susceptibility, heat capacity, neutron scattering, muon spin relaxation, and electron paramagnetic resonance in Cu3B2O6 for the study of the ground state of the spin system of this compound. The results obtained suggest that, at a temperature of 10 K, the spin subsystem of the crystal, which consists of single spins and clusters of pairs and fours of spins interacting with one another, undergoes a transition to a state representing a superposition of the singlet (for clusters) and magnetically ordered (for single spins) states.  相似文献   

13.
Single-crystal samples of the Bi2 + xSr2 ? x ? yCu1 + yO6 + δ system revealed anomalous (negative) thermal expansion in the temperature range 10–20 K. Magnetic fields of 1–3 T were found to strongly affect the position and width of the anomaly region. A thermal-expansion singularity was detected at temperatures T≈30–50 K, which may be related to the formation of a pseudogap.  相似文献   

14.
We have performed neutron diffraction measurements on a single crystal sample of Ca3Co2O6 both in a zero field and in an applied magnetic field. The measurements have revealed details of the zero-field structure of this geometrically frustrated Ising-like spin-chain compound at low temperatures and have also allowed us to examine its magnetisation process. Transitions to the M=Msat/3 ferrimagnetic state and fully polarised ferromagnetic state have been observed. The neutron scattering results are compared with the magnetisation data, where these transitions are accompanied by the appearance of several steps and plateaux.  相似文献   

15.
Magnetic excitations in the antiferromagnetic Bi2CuO4 (T N =42K) are investigated on the basis of anisotropic exchange interaction between spins of Cu2+ ions. We calculate the dispersion curves and evaluate the intensity of the inelastic neutron scattering by spin wave excitations. Spin contraction at OK and the effect of spin wave interaction are studied.  相似文献   

16.
Glasses of 2Bi2O3-3GeO2-xFe2O3 composition, where x = 0–1.5, are obtained under oxidizing and reducing conditions. Glass-ceramic materials are produced by the thermal treatment of the glasses, the properties of which, as well as those of the original glasses, are studied by the methods of X-ray phase analysis and optical and luminescent spectroscopy. It is found that the Fe3+/Fe2+ ion ratio in the samples changes depending on the synthesis conditions of the original glasses and crystallization process.  相似文献   

17.
(La0.7Sr0.3MnO3) x /(YBa2Cu3O7) y composites were prepared by mixing La0.7Sr0.3MnO3 powders and the sol–gel-derived YBa2Cu3O7 matrix, followed by high-temperature calcinations. Their structural, magnetic properties and magnetoresistance effect have been investigated systematically. A giant positive magnetoresistance (PMR) at low magnetic field is observed at low temperatures. In the case of (La0.7Sr0.3MnO3)1/(YBa2Cu3O7)9 composite, the PMR achieves 260% under a magnetic field of 5800 Oe. However, the PMR value sharply decreases with increasing temperature and no magnetoresistance effects are found above metal-insulator transition temperature. The enhancement of spin-dependent scattering at the grain boundaries should be responsible for the observed PMR. In addition, the temperature dependence of resistance under magnetic field could be explained by the competition between diamagnetism and paramagnetism in YBCO phase. At low temperature, the diamagnetism is predominant over paramagnetism and the interface scattering between LSMO grains is enhanced correspondingly. As a result, the low-temperature resistance increases and large PMR appears.  相似文献   

18.
The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.  相似文献   

19.
High-frequency losses in the strongly anisotropic layered superconductor Bi2Sr2CaCu2O8 are measured at 600 MHz under a magnetic field rocking about the ab plane. Anomalies in losses and hysteretic phenomena are found while performing periodic rocking, i.e., cycling the magnetic field component normal to the sample surface. Based on these observations, conclusions are drawn about the nature of magnetic-flux penetration into the superconductor. It is found that, in the range between 60 K and T c , the dynamics of magnetic-flux vortex lines normal to the ab plane in the presence of a constant magnetic field applied parallel to this plane is governed by the critical penetration field H c ⊥* and the surface barrier in the presence of thermally activated vortex motion (giant flux creep). The dependences of H c1 ⊥* and the characteristic field of the surface barrier on the magnitude of the parallel magnetic field are measured.  相似文献   

20.
The oxidation kinetics of Bi1.3Pb0.8Sr2Ca0.8Y0.2Cu2O8+δ solid solutions at different temperatures and \(p_{O_2 } = 0.21\) atm is investigated by thermogravimetry. The results obtained are compared with the previously studied oxidation kinetics of Bi1.3Pb0.8Sr2Ca0.8Y0.2Cu2O8+δ solid solutions. It is found that the substitution of yttrium for calcium leads to an appreciable retardation of the initial oxidation stage associated with the oxygen diffusion. The phonon spectra of the solid solutions are examined using inelastic neutron scattering on a DIN-2PI direct-geometry spectrometer. The high-frequency (>50 meV) phonon densities of states for yttrium-containing and yttrium-free solid solutions are analyzed. The possible model is proposed for a correlation between the differences observed in the high-frequency phonon densities of states attributed to the vibrations of oxygen atoms and the differences in the oxidation kinetics of the solid solutions under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号