首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Application of conversion electron Mössbauer spectroscopy (CEMS) to structural and magnetic analysis of ultrathin films and their interfaces is reviewed. Fe(110) films were prepared on W(110) under UHV conditions and analyzed in situ. CEMS provides detailed information on the mode of growth and film structure and on magnetic hyperfine fields, B hf. Local structure of B hf across the film is discussed in relation to modifications of magnetic order caused by the finite (including monolayer) film thickness and by the electronic structure of the interface.  相似文献   

3.
This article presents a review of the structural and magnetic properties of ultrathin epitaxial Fe films on GaAs(001) and related semiconductor substrates. Interest in these systems and Fe/GaAs(001) in particular has increased significantly over the last two decades, largely due to the emergence of the field of magnetoelectronics. Since then numerous studies of molecular beam epitaxy of Fe on GaAs(001) have been carried out, making it by far the best researched Fe/semiconductor(001) system. Issues such as magnetic anisotropy in the ultrathin regime, however, remain controversial with contradictory reports in the literature giving rise to considerable controversy within the field. By carefully scrutinizing the enormous amount of literature published on Fe/GaAs(001) so far and analysing these results within the wider context of Fe/semiconductor(001) systems, this article tries to settle some of these controversial issues, hence providing a long overdue ‘common denominator' for research in this area.  相似文献   

4.
We present a systematic investigation of magnetic anisotropy induced by oblique deposition of Co thin films on MgO(001) substrates by molecular beam epitaxy at different deposition angles,i.e.,0?,30?,45?,60?,and 75?with respect to the surface normal.Low energy electron diffraction(LEED),surface magneto–optical Kerr effect(SMOKE),and anisotropic magnetoresistance(AMR) setups were employed to investigate the magnetic properties of cobalt films.The values of in-plane uniaxial magnetic anisotropy(UMA) constant Ku and four-fold magnetocrystalline anisotropy constant K1 were derived from magnetic torque curves on the base of AMR results.It was found that the value of Ku increases with increasing deposition angle with respect to the surface normal,while the value of K_1 remains almost constant for all the samples.Furthermore,by using MOKE results,the Ku values of the films deposited obliquely were also derived from the magnetization curves along hard axis.The results of AMR method were then compared with that of hard axis fitting method(coherent rotation) and found that both methods have almost identical values of UMA constant for each sample.  相似文献   

5.
6.
7.
Solid-state synthesis in Ni/Fe/MgO(001) bilayer epitaxial thin films has been studied experimentally. The phase sequence Fe/Ni→(~350°C)Ni3Fe→(~400°C)NiFe→(~ 550°C)γpar is formed as the annealing temperature increases. The crystal structure in the invar region consists of epitaxially intergrown single-crystal blocks consisting of the paramagnetic γpar and ferromagnetic NiFe phases, which satisfy the orientation relationship [100](001)NiFe ∥ [100](001) γpar. It has been shown that the nucleation temperatures of the Ni3Fe, NiFe, and γpar phases coincide with the temperatures of solid-state transformations in the Ni-Fe system.  相似文献   

8.
Thin iron films have been grown on (001) GaAs substrates by low pressure metal organic chemical vapor deposition (LP-MOCVD) at different temperatures with the pressure of 150 Torr. X-ray diffraction (XRD) analysis showed that all films have only one strong diffraction peak (110). The surface of Fe film became smooth with increasing the growth temperature. Magnetization measurements showed that the Fe films grown at different temperatures were ferromagnetic with easy axis parallel to the film surface and hard axis perpendicular to the substrates. The field dependence of magnetization along two axes showed a remarkable difference, implying that the samples have strong magnetic anisotropy. Furthermore, when the applied magnetic field is perpendicular to the Fe surface, a sharp jump in the hysteresis loop could be observed, followed by a broad shoulder, which is related to the interface effect, the existence of carbon and the formation of 180°/90° magnetic domains.  相似文献   

9.
10.
11.
12.
Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-jump hysteresis loops turn into two-jump loops. The temperature dependence of the fourfold in-plane magnetic anisotropy constant K1, domain wall pinning energy, and an additional uniaxial magnetic anisotropy constant KUare responsible for this transformation. The strengths of K1 and domain wall pinning energy increase with decreasing temperature, but KU remains unchanged. Moreover, magnetization reversal mechanisms, with either two successive or two separate 90°domain wall propagation, are introduced to explain the multi-jump magnetic switching process in epitaxial Fe/Mg O(001) films at different temperatures.  相似文献   

13.
The magnetic hyperfine field was measured at 111In(111Cd) probe atoms in ultrathin Ni films epitaxially grown on Cu(100) utilizing the perturbed -angular correlation (PAC) method. The behaviour of the hyperfine field as a function of temperature was studied for different film thicknesses ranging from 2 up to 10 monolayers. It was found that the strength of the hyperfine fields as well as the critical temperatures are strongly reduced for thin nickel films and approach the bulk value with increasing film thickness. The orientation of the hyperfine field is discussed.  相似文献   

14.
We discuss the magnetostatic energy of checkerboard domain structures in ultrathin magnetic films (of a few monolayer thickness) and in an atomic monolayer using simple magnetostatic considerations where the easy direction of magnetization is perpendicular to the film. The checkerboard domain size, D, the domain-wall width, ω, the ratio f of the uniaxial surface anisotropy, Ks, to the dipolar energy and the binding energy, (BE), have been calculated numerically with the variational parameter δ and the number of atomic layers, nl, as parameters.  相似文献   

15.
We describe magneto-optic Kerr effect studies of ultrathin Fe and Ni films on single crystal surfaces of Ag and Cu. Monolayer Fe films on Ag(100) exhibit the theoretically predicted spin-orbit anisotropy, but also yield some interesting discrepancies between behavior predicted by Kerr effect and by spin-polarized photoemission experiments. Layer-dependent studies of the magnetic moment of Ni on Ag(111) and Ag(100) suggest sp-d hybridization effects quench the first layer magnetic moment on Ag(111) but not on Ag(100). Temperature dependent studies of thin film magnetization obtained from Kerr effect measurements yield thickness dependent Curie temperatures, and critical exponents for several thin film systems.  相似文献   

16.
17.
The oxidation characteristics of silicon implanted with a low dose of nitrogen (1–3×1015cm–2) have been studied for dry oxidation conditions at 1020°C. The wafers were subjected to a pre-oxidation annealing. Complete inhibition of the oxide growth occurs in the initial stage of oxidation, while the oxidation rate for prolonged oxidation is identical to that for pure silicon. The oxidation resistance increases with the implantation dose. The resistance is attributed to the formation of a nitrogen-rich surface film during annealing. This layer, which consists of only a few monolayers, is presumably composed of oxynitride. The electrical characteristics of MOS capacitors formed on implanted wafers show that the interface state density is not significantly increased by the low-dose N implantation.  相似文献   

18.
The critical behavior, ferromagnetic order and magnetic anisotropies of ultrathin, epitaxial, magnetic films is studied using electron capture spectroscopy (ECS), which is capable of probing the long-ranged and short-ranged electron spin polarization (ESP) at the topmost surface layer of uncoated and coated magnetic structures. For all systems [Ni(100)/Cu(100), Ni(100)/NaCl(100), fcc Fe(111)/Cu(111), Fe(100)/Ag(100), Tb/Fe(100)/Ag(100), Fe(100)/Au(100), hcp Tb(0001)/W(110), Fe(110)/W(110), V(100)/Ag(100), Pd(100)/Ag(100), Pd/W(110)] investigated so far, ferromagnetic order is detected. It is found that the surface Curie temperatureT Cs depends on film thicknessd. ECS data obtained at the surface of various systems reveal the existence ofT- andd-dependent magnetic anisotropies. Although for V(100)/Ag(100) the measured critical exponent=0.128 agrees very well with=1/8 predicted for the two-dimensional Ising model, for other systems, such as Fe(100)/Au(100), the measured value (0.25) is in disagreement with theoretical predictions. The experimental results are discussed within the framework of presently available experimental and theoretical data.  相似文献   

19.
20.
The structure and magnetism of ultrathin Fe films epitaxially grown on a Cu(001) surface are investigated by grazing scattering of fast H and He atoms or ions. By making use of a new variant of ion beam triangulation based on the detection of the number of emitted electrons, we obtain direct information on the structure of the film surface. We observe for room temperature growth a dominant and defined fcc-like structure. Complex surface reconstructions as reported in recent STM and LEED studies are observed only for cooling and H2 dosing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号