共查询到19条相似文献,搜索用时 171 毫秒
1.
2.
3.
无人机易于受到高功率微波干扰和损伤,无人机机载天线是高功率微波干扰的重要耦合途径。为了研究无人机机载天线高功率微波耦合响应,以数据链天线和导航接收机天线为研究对象,根据无人机实际布局,建立高功率微波辐照下无人机机载天线的耦合模型,通过仿真天线辐射模型远场辐射方向图及S11参数验证天线模型的准确性,得到不同辐照场景和高功率微波辐射场参数下数据链天线和导航接收机天线端口的耦合电压,并进行了典型场景试验验证,结果表明:L波段高功率微波辐照下数据链天线的耦合电压较S、C和X波段更高,相较于水平极化,垂直极化辐射场对无人机数据链的干扰效果更佳,耦合电压与辐射场强成线性关系,受脉宽和前沿的影响较小;空中高功率微波辐照场景下导航接收机天线的耦合电压较地面高功率微波辐照场景更高,该研究将在高功率微波武器打击无人机方面提供理论参考依据。 相似文献
4.
依据数值模拟结果研制了一套X波段多模微波喇叭,采用3次变张角喇叭结构,设计要求辐射功率大于3 GW,E面和H面方向图在10 dB范围内等化度良好,10 dB波束宽度为40°。近场冷测结果表明,H面10 dB波束宽度为43°,E面10 dB波束宽度为40°。远场热测结果表明,H面10 dB波束宽度为40°,E面10 dB波束宽度为41°,在初步测试中,通过对比在线测量结果和辐射场测量结果,证明研制的喇叭输出功率达1.3 GW时不会出现击穿现象。 相似文献
5.
依据数值模拟结果研制了一套X波段多模微波喇叭,采用3次变张角喇叭结构,设计要求辐射功率大于3 GW,E面和H面方向图在10 dB范围内等化度良好,10 dB波束宽度为40°。近场冷测结果表明,H面10 dB波束宽度为43°,E面10 dB波束宽度为40°。远场热测结果表明,H面10 dB波束宽度为40°,E面10 dB波束宽度为41°,在初步测试中,通过对比在线测量结果和辐射场测量结果,证明研制的喇叭输出功率达1.3 GW时不会出现击穿现象。 相似文献
6.
7.
8.
利用电磁仿真软件模拟了不同结构角锥喇叭天线的增益特性,选择了增益较低的角锥喇叭天线作为X波段高功率微波测量天线。同时,对角锥喇叭天线电磁脉冲响应、有无法兰和有无直波导进行了数值计算和实验研究。数值计算结果表明:角锥喇叭天线不会对20 ns短脉冲波形产生大的影响,能够用于短脉冲测量;法兰和300 mm直波导对角锥喇叭天线增益的影响小于0.2 dB。实验结果表明:角锥天线增益随频率变化无振荡现象,300 mm直波导对角锥喇叭天线增益的影响小于0.2 dB,方向图主瓣宽度约为50°,适用于测试环境较复杂的高功率微波辐射场测量。 相似文献
9.
10.
高功率微波大气传播过程中,天线附近的功率密度最大,容易发生强电离或大气击穿,由此产生“尾蚀效应”等非线性衰减,因此,传输过程中产生的大气击穿限制了高功率微波天线的最大发射功率。通过分析天线近场模型,研究了矩形口径天线和圆口径天线的近场轴向功率密度分布,得到了不同口面场分布下天线的最大归一化功率密度及其最大值所处的位置,并结合大气击穿功率密度阈值计算出锥照圆口径天线的最大发射功率约为148.47 GW。 相似文献
11.
12.
为了减小馈线损耗和方便天线旋转,设计了超宽带Cassegrain双反射面天线系统。采用FEKO数值模拟软件在0.2~1.5 GHz频率范围内模拟了不同副反射面直径的4.5 m双反射面天线(焦径比为0.4)的辐射增益,并与相同口径和焦径比的前馈式反射面天线进行了比较。模拟结果表明:当双曲副反射面直径为70 cm,焦距为22.5 cm时,在0.2~1.0 GHz频率范围内,双反射面天线增益比前馈式抛物面天线高1~2 dB;在1.1~1.5 GHz频率范围内,双反射面天线增益比前馈式抛物面天线小1~2 dB。选择直径为70 cm、焦距为22.5 cm的双曲副面与TEM喇叭和4.5 m抛物面组成双反射面天线系统,分别用960 ps和3 ns脉宽的单极脉冲源对天线进行了实验研究。实验结果表明:用960 ps和3 ns脉宽的单极脉冲激励,Cassegrain双反射面天线在70 m轴上远场辐射场波形峰峰值分别为前馈式反射面天线的158%和162%。 相似文献
13.
基于漏波波导行波天线辐射理论,设计了一种X波段基于漏波波导的高功率微波(HPM)天线。采用微扰法和横向谐振法对天线的辐射特性进行分析,结合数值模拟优化给出了一种基于漏波波导的X波段HPM天线的设计方案。数值模拟表明:该天线在9.6 GHz时增益为26.2 dBi,口径效率大于70%,反射系数小于-20 dB。通过理论分析与数值模拟得到该天线的功率容量大于200 MW,在最大增益点上对ns量级短脉冲的远场响应波形不存在畸变,验证了该天线在HPM条件下使用的可行性。 相似文献
14.
15.
16.
提出了一种工作在C波段的高功率平板波导螺旋阵列天线。以平板波导馈电,降低了馈电复杂性和馈电结构高度;对基本的电探针结构进行改进,通过控制扇形缝隙的圆心角大小来调整耦合量,并采用上下脊结构消除反射;设计了短螺旋天线结构,通过分离的参数分别优化轴比和反射,得到天线的轴比在−7°~7°的范围内小于0.5 dB;构建了一个20单元的直线馈电阵列,通过电探针结构从平板波导中耦合能量,实现了20单元的等幅馈电。最后仿真了一个工作在4.3 GHz,包含20×20个单元的螺旋阵列天线,结果表明:该天线的增益为31.6 dB,口径效率为74%,在4.11~4.43 GHz的频带范围内反射小于−16 dB,功率容量3.6 GW。 相似文献
17.
对高功率超宽谱双反射面天线系统进行了优化改进设计,兼顾辐射性能、馈入反射和功率容量。采用沿能流线设计的粗胖实体结构代替板状TEM喇叭极板结构,增加低频电流的回流通道,从而改善天线馈入反射特性。将副反射面设计为尼龙箱体内、外两部分,使其与尼龙箱体之间的连接螺钉不再突出于高压电场中,优化后最大场强下降了约70%,功率容量达到59 GW,通过Taguchi优化算法对组合馈源喇叭结构进行整体优化,天线辐射因子rE(辐射场峰值与观测点距离乘积)提高了1.2倍。优化后的天线系统进行了高功率实验,实验结果表明:天线系统功率容量达到30 GW,辐射因子超过8 MV。 相似文献
18.
扇形波导可作为高功率微波圆柱共形波导缝隙阵天线的基本单元。分析了扇形波导中主模场分量,根据实际情况对主模场进行了合理近似。采用互易定理推导由波导主模横向场分量和缝隙场分量表示的波导场分量的前向或后向散射系数。根据波导传输线理论,将波导宽边纵缝等效为并联导纳,再根据波导边界条件得到扇形波导宽边谐振纵缝的归一化电导与波导散射系数之间的关系式。根据缝隙天线与振子天线的互补关系得到扇形波导谐振缝隙的辐射阻抗,结合波导功率平衡关系得到由波导横向场散射系数表示的缝隙辐射功率表达式,得到归一化电导的与谐振宽边纵缝的偏移位置、缝隙宽度、波导波长以及扇形波导尺寸参数之间的解析表达式。给出了算例,在波导中间区域,通过商用软件计算得到的电导与理论公式结果基本吻合。 相似文献