首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics of silicon nitride (SiNx:H) films, grown by plasma enhanced chemical vapor deposition (PECVD) on various metals such as Ta, IrMn, NiFe, Cu, and CoFe at various temperatures down to 100 °C, were studied using measurements of BHF etch rate, surface roughness and Auger electron spectroscopy (AES). The results were compared with those obtained for SiNx:H films on Si. The deposition rate of SiNx:H films increased slightly as deposition temperature decreased, and showed a weak dependence on the underlying materials. The surface of the nitride films deposited on all underlying materials at lower temperatures (below 150 °C) became rougher. In particular, a bubble-like surface was observed on the nitride film deposited on NiFe at 100 °C. At higher deposition temperatures (above 200 °C), SiNx:H films on all the above metals had small RMS values, except for films on Cu which cracked at 250 °C. BHF (10:1) etch rate increased dramatically for nitride films deposited below 150 °C. For different underlying films, the BHF etch rate was quite different, but exhibited the same trend with decrease in deposition temperature. AES measurements showed that Si and N concentrations in the SiNx:H films were only slightly different for the various deposition temperatures and underlying materials. AES depth profile of nitride films indicated that both surface O content and the depth of oxygen penetrating into SiNx:H increased for low temperature-deposited films. However, there was no observed oxygen signal from within the films, even for films deposited at 100 °C, and both Si and N concentrations were uniform throughout the film. Received: 26 October 2001 / Accepted: 2 March 2001 / Published online: 20 June 2001  相似文献   

2.
We synthesized by pulsed laser deposition a bilayer of Ti/TiN on Si(100) wafers which was coated in a next step with hydroxyapatite (samples labelled HA-1). Some of the structures were further thermally treated in a water vapour jet (samples labelled HA-2). In SEM, the HA surface looked rough, with micronic droplets. TEM and SAED investigations revealed a compact organization of HA crystals in the case of the HA-1 sample, while two regions (one compact and one porous) were identified for the HA-2 sample, with triclinic HA crystals within the 500 nm range. In XTEM, at the Si/TiN border, a 2–3 nm SiO2 layer was visible, whereas at the TiN/Ti border there was a smooth transition from fcc (111) TiN to hcp (100) Ti. The HA crystals were elongated normal to the surface. According to Berkovich indentation qualitative analyses, the sample HA-1 was more homogeneous and harder but brittle. Scratch tests confirmed quantitatively that HA-1 was more resistant and adherent than HA-2 films. In the first case, the big droplets only were removed by the indenter, while the HA-2 films were delaminated on large areas as a result of wedge spallation failure.  相似文献   

3.
Bismuth (Bi) thin films of different thicknesses were deposited onto Si(1 0 0) substrate at various substrate temperatures by thermal evaporation technique. Influences of thickness and deposition temperature on the film morphologies, microstructure, and topographies were investigated. A columnar growth of hexahedron-like grains with bimodal particle size distribution was observed at high deposition temperature. The columnar growth and the presence of large grains induce the Bi films to have large surface roughness as evidenced by atomic force microscopy (AFM). The dependence of the crystalline orientation on the substrate temperature was analyzed by X-ray diffraction (XRD), which shows that the Bi films have completely randomly oriented polycrystalline structure with a rhombohedral phase at high deposition temperature (200 °C) and were strongly textured with preferred orientation at low deposition temperatures (30 and 100 °C).  相似文献   

4.
采用脉冲激光气相沉积(PLD)方法,在Si(100)晶面上制备了Co:BaTiO3纳米复合薄膜.采用X射线衍射(XRD)结合透射电镜(TEM)方法研究了两种厚度Co:BaTiO3纳米复合薄膜的晶体结构,当薄膜厚度约为30 nm时,薄膜为单一择优取向;当薄膜厚度约为100nm时,薄膜呈多晶结构.原子力显微镜(AFM)分析表明,当膜厚为30nm时,薄膜呈现明显的方形晶粒.采用紫外光电子能谱(UPS)研究了Co的价态和Co:BaTiO3纳米复合薄  相似文献   

5.
采用脉冲激光气相沉积(PLD)方法,在Si(100)晶面上制备了Co:BaTiO3纳米复合薄膜.采用X射线衍射(XRD)结合透射电镜(TEM)方法研究了两种厚度Co:BaTiO3纳米复合薄膜的晶体结构,当薄膜厚度约为30 nm时,薄膜为单一择优取向;当薄膜厚度约为100nm时,薄膜呈多晶结构.原子力显微镜(AFM)分析表明,当膜厚为30nm时,薄膜呈现明显的方形晶粒.采用紫外光电子能谱(UPS)研究了Co的价态和Co:BaTiO3纳米复合薄 关键词: 3')" href="#">BaTiO3 纳米复合薄膜 紫外光电子能谱  相似文献   

6.
In this paper, we report on the characteristics of GaN films grown on Si(111) at a low temperature (200 °C) by electron cyclotron resonance (ECR) plasma-assisted metalorganic chemical vapor deposition (PA-MOCVD). Structural analysis of the GaN films was performed by using scanning electron microscopy (SEM), atomic force miscroscopy (AFM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), and Rutherford backscattering spectrometry (RBS). Post deposition analysis revealed high quality crystalline GaN was obtained at this low temperature. Electrical analysis of the GaN films was done by using current-voltage (I-V) measurements where electrical characterizations were carried on GaN/Si heterojunction and Schottky barrier diodes. Rectification behaviour was observed for the isotype GaN/Si (n-n) heterojunction. Ideality factors and Schottky barrier heights for Ni and Cr Schottky barriers on GaN, were deduced to be 1.4 and 1.7; and 0.62 and 0.64 eV, respectively.  相似文献   

7.
In this work we have studied the influence of laser modification on the composition and structure of tungsten titanium (WTi) thin films, deposited on n-type (100) silicon wafers. After deposition, the samples were multi-pulse laser irradiated in a nitrogen, oxygen, and helium ambient. The composition of the WTi/Si sample was determined by Elastic Recoil Detection Analysis (ERDA). Surface morphology was monitored by Atomic Force Microscopy (AFM). In the experiment, typical laser output parameters were: wavelength 1064 nm, pulse duration 150 ps, and laser pulse energy 30 mJ. Surface concentrations of W and Ti, as well as the concentration of gas components nitrogen and oxygen were determinated before and after the action of laser radiation in different ambient conditions. The contents of W and Ti decreased after irradiation due to adsorbed gases from the surrounding atmosphere. After surface irradiation in the inert ambient (He), the concentrations of the components were not significantly changed. In other cases, oxygen was the dominant component at the surface, probably due to the high affinity of thin film components. Also, the morphological changes occurred at the surface of WTi, as an increase in the surface roughness and formation of the granular structures are a result of laser-induced surface oxidation and recrystallization.  相似文献   

8.
Epitaxial (001) aluminum nitride (AlN) thin films on (111) Si substrates are prepared using pulsed-laser deposition. The epitaxial structure of the as-prepared thin films is characterized by checking the X-ray-diffraction θ-2 θ scan and pole-figure, using scanning electron microscopy, infrared radiation (IR) spectroscopy and Raman spectroscopy. The surface acoustic-wave resonance at 345 MHz for a 1.5 μm thick AlN film on a (111) Si substrate is observed using an inter-digital electrode. Received: 18 September 2001 / Accepted: 29 January 2002 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +86-25/359-5535, E-mail: liujm@nju.edu.cn  相似文献   

9.
High quality gallium nitride thin films have been successfully grown on the Ga-diffused Si(1 1 1) substrates through ammoniating Ga2O3 thin films deposited by r.f. magnetron sputtering. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscope (AFM) and photoluminescence (PL) were used to characterize the synthesized samples. The analyses reveal that the formed films are high quality polycrystalline hexagonal gallium nitride. The as-formed GaN films show a flat surface topography with RMS roughness varied from 29 to 48 Å. The strong near-band-edge-emission peak around 368 nm was observed at room temperature. This is a novel method to fabricate GaN thin films based on the direct reaction between Ga2O3 and NH3 on the Ga-diffused Si(1 1 1) substrates.  相似文献   

10.
Growth of TiN films at low temperature   总被引:1,自引:0,他引:1  
L.I. Wei 《Applied Surface Science》2007,253(17):7019-7023
Thermodynamic analysis on growth of TiN films was given. The driving force for deposition of TiN is dependent on original Ti(g)/N(g) ratio and original partial pressure of N(g). TiN films were deposited by ion beam assisted electron beam evaporation system under suitable nitrogen gas flow rate at 523 K while the density of plasma varied with diverse discharge pressure had been investigated by the Langmuir probe. TiN films were characterized by means of Fourier transform infrared absorption spectrum (FTIR), X-ray diffraction (XRD) and observed by means of atom force microscopy (AFM). The results of these measurements indicated preferential TiN(1 1 1) films were deposited on substrate of Si(1 0 0) and glass by ion beam assisted electron beam evaporation system at low temperature, and it was possible for the deposition of TiN films with a preferential orientation or more orientations if the nitrogen gas flow rate increased enough. Sand Box was used to characterize the fractal dimension of surface of TiN films. The results showed the fractal dimension was a little more than 1.7, which accorded with the model of diffusion limited aggregation (DLA), and the fractal dimension of TiN films increased with increase of the temperature of deposition.  相似文献   

11.
Thin high-carbon iron films were deposited by pulsed laser deposition onto grids for transmission electron microscopy using pre-combined carbon/iron targets with equal area ratio. The deposited films of about 20 nm in thickness were directly characterized by transmission electron microscopy. The films showed a variety of phases, surprisingly also including the NaCl-type FeC phase, which was theoretically predicted in the literature. For comparison, thin high-carbon stainless-steel films were deposited onto oxidized Si wafers with different carbon ratios in the targets (10, 20, 40 and 50 at.%). These films were characterized by means of Mössbauer Spectroscopy, the magneto-optical Kerr-effect, grazing incidence X-ray diffraction and Rutherford backscattering spectrometry. With these methods clearly defined multilayer-structures were observed which could lead to interesting magneto-resistance phenomena if the thickness of the multilayers can be controlled by the processing parameters.  相似文献   

12.
Silicon grain arrays were prepared using a pattern crystallization technique of pulsed KrF excimer laser irradiation. The precursor material was hydrogenated amorphous silicon (a-Si:H) thin films deposited on single crystal Si wafers by plasma-enhanced chemical vapor deposition. It was shown that Si grains with a uniform size and a well-defined periodicity embedded in the a-Si:H matrix were obtained by this simple technique. The grain size was less than 2 μm. Relativly strong photo-luminescence with two peaks at 720 and 750 nm was observed at room temperature. We expect to reduce Si grain sizes by optimizing the growth conditions of a-Si:H thin films and controlling the temperature distribution in the film during laser irradiation. Received: 21 November 2000 / Accepted: 12 December 2000 / Published online: 9 February 2001  相似文献   

13.
Morphologies of Cu(111) films on Si(111)-7×7 surfaces prepared at lowtemperature are investigated by scanning tunnelling microscopy (STM) andreflection high-energy electron diffraction (RHEED). At the initial growth stage, Cu films are flat due to the formation of silicide at the interface that decreases the mismatch between Cu films and the Si substrate. Different from the usual multilayer growth of Cu/Cu(111), on the silicide layer a layer-by-layer growth is observed. The two dimensional (2D) growth is explained by the enhanced high island density at low deposition temperature. Increasing deposition rateproduces films with different morphologies, which is the result of Ostwald ripening.  相似文献   

14.
Epitaxial Si growth at low temperatures (500–800 °C) by atmospheric pressure plasma chemical vapor deposition has been investigated. Silicon films are deposited on (001) Si wafers using gas mixtures containing He, H2, and SiH4. The effects of deposition parameters (composition of reactive gases, very high frequency (VHF) power, and substrate temperature) on film properties are investigated by reflection high-energy electron diffraction, atomic force microscopy, cross-sectional transmission electron microscopy, and plasma emission spectroscopy. It is found that epitaxial temperature can be reduced by increasing VHF power, and that an optimum range of VHF power exists for Si epitaxy, depending on the substrate temperature and the composition of the reactive gases. The result of the H2 concentration dependence of Hα emission intensity, shows that hydrogen atoms generated in the atmospheric pressure plasma play an important role in Si epitaxial growth. Under the optimized growth conditions, defect-free epitaxial Si films (as observed by transmission electron microscopy) with excellent surface flatness are grown at 500 °C with an average growth rate of approximately 0.25 μm/min. PACS 81.05.Cy; 81.15.Gh; 68.55.Jk  相似文献   

15.
Thin gold films were fabricated by vacuum resistive deposition on the n-Ge (1 1 1) wafers. The films were annealed between 300 and 600 °C. These resulting thin films were then characterised using scanning electron microscopy (field emission and back-scattering modes), Rutherford back scattering spectroscopy and time of flight secondary ion mass spectroscopy (TOF-SIMS). For temperatures below the eutectic temperature the distribution of both the gold and the germanium on the surface are uniform. Above the eutectic temperature, the formation of gold rich islands on the surface of the Germanium were observed. These changes in the microstructure were found to correspond to changes in the electrical characteristics of the diodes.  相似文献   

16.
We achieved the growth of cubic silicon carbide (SiC) films on (1 0 0)Si substrates by pulsed laser deposition (PLD) at moderate temperatures such as 750 °C, from a SiC target in vacuum. The as-deposited films are morphologically and structurally characterized by scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM). The morphology of deposited films is dominated by columns nucleated from a thin nanostructured beta silicon carbide (β-SiC) interface layer. The combined effects of columnar growth, tilted facets of the emerging columns and the presence of particulates on the film surface, lead to a rather rough surface of the films.  相似文献   

17.
For the first time, zinc oxide epitaxial films on silicon were grown by the method of atomic layer deposition at a temperature T = 250°C. In order to avoid a chemical reaction between silicon and zinc oxide (at the growth temperature, the rate constant of the reaction is of the order of 1022), a high-quality silicon carbide buffer layer with a thickness of ~50 nm was preliminarily synthesized by the chemical substitution of atoms on the silicon surface. The zinc oxide films were grown on n- and p-type Si(100) wafers. The ellipsometric, Raman, electron diffraction, and trace element analyses showed that the ZnO films are epitaxial.  相似文献   

18.
Multipod ZnO whiskers were synthesized successfully by two steps: pulsed laser deposition (PLD) and thermal evaporation process. First, a thin layer of Zn films were deposited on Si(1 1 1) substrates by PLD. Then the whiskers grew on Zn-coated Si(1 1 1) substrate by the simple thermal evaporation oxidation of the metallic zinc powder at 900 °C in the air without any catalysts or additives. The pre-deposited Zn films by PLD on the substrate can promote the growth of ZnO multipod whiskers effectively. The as-synthesized ZnO whiskers were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the whiskers are highly crystalline with the wurtzite hexagonal structure. Room temperature photoluminescence (PL) spectrum of the whiskers shows a UV emission peak at ∼393 nm and a broad green emission peak at ∼517 nm, which was assigned to the near band-edge emission and the deep-level emission, respectively.  相似文献   

19.
Thin films of polyethylene glycol (PEG) of average molecular weight, 1400 amu, were deposited by both matrix-assisted pulsed laser evaporation (MAPLE) and pulsed laser deposition (PLD). The deposition was carried out in vacuum (∼10-6 Torr) with an ArF (λ=193 nm) laser at a fluence between 150 and 300 mJ/cm2. Films were deposited on NaCl plates, Si(111) wafers, and glass slides. The physiochemical properties of the films are compared via Fourier transform infrared spectroscopy (FTIR), electrospray ionization (ESI) mass spectrometry, and matrix-assisted laser desorption and ionization (MALDI) time-of-flight mass spectrometry. The results show that the MAPLE films nearly identically resemble the starting material, whereas the PLD films do not. These results are discussed within the context of biomedical applications such as drug delivery coatings and in vivo applications where there is a need for transfer of polymeric coatings of PEG without significant chemical modification. Received: 2 March 2001 / Accepted: 5 March 2001 / Published online: 23 May 2001  相似文献   

20.
Heat treatment with high-pressure H2O vapor was applied to improve interface properties of SiO2/Si and passivate the silicon surface. Heat treatment at 180–420 °C with high-pressure H2O vapor changed SiOx films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO2 films with a Si-O-Si bonding network similar to that of thermally grown SiO2 films. Heat treatment at 130 °C with 2.8×105 Pa H2O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiOx/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiOx films on the SiO2 films formed by heat treatment at 340 °C with high-pressure H2O vapor. The SiOx deposition reduced the recombination velocity from 100 cm/s to 48 cm/s. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号