首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
改性羰基钴催化氢甲酰化反应系列基元反应的理论研究   总被引:7,自引:0,他引:7  
在HF/LANL2DZ水平下,采用有效核势能近似(ECP)从头算方法,研究了有机膦配体改性羰基钴催化的氢甲酰化反应循环中部分基元反应步骤的微观反应机理.优化了基态势能面上诸反应中间体、过渡态和产物的几何构型.计算了反应活化位垒.结果表明,羰基插入、加氢氧化和脱氢还原的基元反应步骤的活化位垒分别为54.02,134.02和43.44kJ/mol.  相似文献   

2.
采用有效核势能近似(ECP)从头算方法,在HF/LANL2DZ水平下研究了羰基钴催化的氢甲酰化反应循环中的羰基插入、H2 氧化加成和脱氢还原系列基元反应步骤的反应机理.优化得到了反应基态势能面的中间体、过渡态和产物的几何构型.计算了反应活化位垒,并对各过渡态进行了振动分析以确认.理论计算结果表明,羰基插入、H2 氧化加成、脱氢还原的基元反应步骤的活化位垒分别为67.79、139.11和44.78kJ·mol-1.  相似文献   

3.
The complete basis set method CBS-QB3 has been used to study the thermochemistry and kinetics of the esters ethyl propanoate (EP) and methyl butanoate (MB) to evaluate initiation reactions and intermediate products from unimolecular decomposition reactions. Using isodesmic and isogeitonic equations and atomization energies, we have estimated chemically accurate enthalpies of formation and bond dissociation energies for the esters and species derived from them. In addition it is shown that controversial literature values may be resolved by adopting, for the acetate radical, CH3C(O)O(.-), DeltaH(o)(f)298.15K) = -197.8 kJ mol(-1) and for the trans-hydrocarboxyl radical, C(.-)(O)OH, -181.6 +/- 2.9 kJ mol(-1). For EP, the lowest energy decomposition path encounters an energy barrier of approximately 210 kJ mol(-1) (approximately 50 kcal mol(-1)), which proceeds through a six-membered ring transition state (retro-ene reaction) via transfer of the primary methyl H atom from the ethyl group to the carbonyl oxygen, while cleaving the carbon-ether oxygen to form ethene and propanoic acid. On the other hand, the lowest energy path for MB has a barrier of approximately 285 kJ mol(-1), producing ethene. Other routes leading to the formation of aldehydes, alcohols, ketene, and propene are also discussed. Most of these intramolecular hydrogen transfers have energy barriers lower than that needed for homolytic bond fission (the lowest of which is 353 kJ mol(-1) for the C(alpha)-C(beta) bond in MB). Propene formation is a much higher energy demanding process, 402 kJ mol(-1), and it should be competitive with some C-C, C-O, and C-H bond cleavage processes.  相似文献   

4.
The mechanism of the cycloaddition reaction between singlet dichloro‐germylene carbene and aldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by zero‐point energy and CCSD (T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The channel (A) consists of four steps: (1) the two reactants (R1, R2) first form an intermediate INT2 through a barrier‐free exothermic reaction of 142.4 kJ/mol; (2) INT2 then isomerizes to a four‐membered ring compound P2 via a transition state TS2 with energy barrier of 8.4 kJ/mol; (3) P2 further reacts with aldehyde (R2) to form an intermediate INT3, which is also a barrier‐free exothermic reaction of 9.2 kJ/mol; (4) INT3 isomerizes to a germanic bis‐heterocyclic product P3 via a transition state TS3 with energy barrier of 4.5 kJ/mol. The process of channel (B) is as follows: (1) the two reactants (R1, R2) first form an intermediate INT4 through a barrier‐free exothermic reaction of 251.5 kJ/mol; (2) INT4 further reacts with aldehyde (R2) to form an intermediate INT5, which is also a barrier‐free exothermic reaction of 173.5 kJ/mol; (3) INT5 then isomerizes to a germanic bis‐heterocyclic product P5 via a transition state TS5 with an energy barrier of 69.4 kJ/mol. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
The cycloaddition mechanism of the reaction between singlet dimethyl germylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD (T)//MP2/6-31G* method. From the potential energy profile, we predict that the cycloaddition reaction between singlet dimethyl germylidene and formaldehyde has two dominant reaction pathways. First dominant reaction pathway consists of three steps: (1) the two reactants (R1, R2) firstly form an intermediate INT1a through a barrier-free exothermic reaction of 43.0 kJ/mol; (2) INT1a then isomerizes to a four-membered ring compound P1 via a transition state TS1a with an energy barrier of 24.5 kJ/mol; (3) P1 further reacts with formaldehyde(R2) to form a germanic heterocyclic compound INT3, which is also a barrier-free exothermic reaction of 52.7 kJ/mol; Second dominant reaction pathway is as following: (1) the two reactants (R1, R2) firstly form a planar four-membered ring intermediate INT1b through a barrier-free exothermic reaction of 50.8 kJ/mol; (2) INT1b then isomerizes to a twist four-membered ring intermediate INT1.1b via a transition state TS1b with an energy barrier of 4.3 kJ/mol; (3) INT1.1b further reacts with formaldehyde(R2) to form an intermediate INT4, which is also a barrier-free exothermic reaction of 46.9 kJ/mol; (4) INT4 isomerizes to a germanic bis-heterocyclic product P4 via a transition state TS4 with an energy barrier of 54.1 kJ/mol.  相似文献   

6.
The C--Hbond insertion reactions between benzyl methyl ether and CX2(X=H, F, Cl) have been studied by using density functional theory at B3LYP/631G*level.The potential barriers for the C--Hbond insertions in methyl group of benzyl methyl ether are123.3 kJ/mol(X=Cl) and240.4 kJ/mol(X=F), and those in benzyl group are37.5 kJ/mol(X=Cl) and112.2 kJ/mol(X=F) respectively.No potential barriers are present in both the insertion reactions with methylene groupThe C--Hbond insertion reactions between benzyl methyl ether and CX2(X=H,F,Cl) take place primarily at α carbon of the benzyl group and the phenyl group promotes the C-Hbond insertion by carbene at its neighboring α-carbon more easily  相似文献   

7.
Xiuhui Lu  Xin Che  Leyi Shi  Junfeng Han 《中国化学》2010,28(10):1803-1809
The mechanism of the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (1) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 117.5 kJ/mol; (2) intermediate (INT1) then isomerizes to a four‐membered ring compound (P2) via a transition state (TS2) with an energy barrier of 25.4 kJ/mol; (3) four‐membered ring compound (P2) further reacts with formaldehyde (R2) to form an intermediate (INT3), which is also a barrier‐free exothermic reaction of 19.6 kJ/mol; (4) intermediate (INT3) isomerizes to a germanic bis‐heterocyclic product (P3) via a transition state (TS3) with an energy barrier of 5.8 kJ/mol. Second dominant reaction pathway is as follows: (1) the two reactants (R1, R2) first form an intermediate (INT4) through a barrier‐free exothermic reaction of 197.3 kJ/mol; (2) intermediate (INT4) further reacts with formaldehyde (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 141.3 kJ/mol; (3) intermediate (INT5) then isomerizes to a germanic bis‐heterocyclic product (P5) via a transition state (TS5) with an energy barrier of 36.7 kJ/mol.  相似文献   

8.
The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (I) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 46.2 kJ/mol; (II) intermediate (INT1) then isomerizes to a planar four‐membered ring product (P3) via transition state (TS3) with an energy barrier of 47.1 kJ/mol; (III) planar four‐membered ring product (P3) further reacts with acetone (R2) to form an intermediate (INT4), which is also a barrier‐free exothermic reaction of 40.0 kJ/mol; (IV) intermediate (INT4) isomerizes to a silapolycyclic compound (P4) via transition state (TS4) with an energy barrier of 57.0 kJ/mol. Second dominant reaction pathway consists of three steps: (I) the two reactants (R1, R2) first form a four‐membered ring intermediate (INT2) through a barrier‐free exothermic reaction of 0.5 kJ/mol; (II) INT2 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 45.4 kJ/mol; (III) intermediate (INT5) isomerizes to a silapolycyclic compound (P5) via transition state (TS5) with an energy barrier of 49.3 kJ/mol. P4 and P5 are isomeric compounds. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

9.
The mechanism of the cycloaddition reaction between singlet dichlorosilylene carbene (Cl2Si=C:) and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by Zero-point energy and CCSD (T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The first dominant reaction pathway consists of two steps: (1) the two reactants (R1, R2) firstly form a four-membered ring intermediate (INT4) through a barrier-free exothermic reaction of 387.9 kJ/mol; (2) intermediate (INT4) then isomerizes to H-transfer product (P4.2) via a transition state (TS4.2) with energy barrier of 4.7 kJ/mol. The second dominant reaction pathway as follows: on the basis of intermediate (INT4) created between R1 and R2, intermediate (INT4) further reacts with formaldehyde (R2) to form the intermediate (INT5) through a barrier-free exothermic reaction of 158.3 kJ/mol. Then, intermediate (INT5) isomerizes to a silicic bis-heterocyclic product (P5) via a transition state (TS5), for which the barrier is 40.1 kJ/mol.  相似文献   

10.
The mechanism of addition reaction between carbene and epoxyethane has been investigated employing the MP2 and B3LYP/6-311+G* levels of theory. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Based on the calculated results at the MP2/6-311+G* level of theory, it can be predicted that there are two reaction mechanisms (1) and (2). In the first reaction carbene attacks the atom O of epoxyethane to form an intermediate 1a (IM1a), which is a barrier-free exothermic reaction. Then, IM1a can isomerize to IM1b via a transition state 1a (TS1a), where the potential barrier is 48.6 kJ/mol. Subsequently, IM1b isomerizes to a product epoxypropane (Pro1) via TS1b with a potential barrier of 14.2 kJ/mol. In the second carbene attacks the atom C of epoxyethane firstly to form IM2 via TS2a. Then IM2 isomerizes to a product allyl alcohol (Pro2) via TS2b with a potential barrier of 101.6 kJ/mol. Correspondingly, the reaction energies for the reactions (1) and (2) are −448.4 and −501.6 kJ/mol, respectively. Additionally, the orbital interactions are also discussed for the leading intermediate. The results based on the B3LYP/6-311+G* level of theory are paralleled to those on the MP2/6-311+G* level of theory. Furthermore, the halogen and methyl substituent effects of H2C: on the two reaction mechanisms have been investigated. The calculated results indicate that the introductions of halogen or methyl make the addition reaction difficult to proceed.  相似文献   

11.
用从头计算方法在MP2 /6 31G(d)水平上研究了CX2 (X =H ,F ,Cl)与甲基异丙基醚的C -H键插入反应。CCl2 与甲基异丙基醚两个不同的α C的C -H键插入势垒分别为 117.2kJ/mol (甲基 )和 2 0 .6kJ/mol (异丙基 )。CF2 与异丙基α C的C -H键上插入势垒为 12 0 .0kJ/mol,在插入甲基上C -H键时会引起C -O键的断裂。CH2 的插入反应则不需要势垒。对CX2 与二甲醚、甲乙醚、甲基异丙基醚、甲基苄基醚上各种不同的C -H键插入势垒进行了比较 ,甲基和苯基都促使其毗邻的C -H键更容易被CX2 所插入  相似文献   

12.
Density functional theory was used to investigate the oxidative addition and subsequent carbonyl insertion and deinsertion steps of the reaction of methyl iodide to a rhodium(I) acetylacetonato complex of the formula [Rh(acac)(CO)(PPh(3))] (Hacac = acetylacetone). This process has been studied experimentally for many rhodium β-diketonato complexes, but, to the best of our knowledge, this is the first systematic computational study of the complete reaction sequence. Experimental (1)H techniques complement the theoretical results on the stereochemistry of the reaction intermediates and products. (1)H NMR also revealed the existence of a second rhodium(III)-acyl product, which has not been previously observed in this reaction. The calculated Gibbs free energy of activation of the oxidative addition reaction is 71 kJ mol(-1), which is in agreement with the experimental value of 82(1) kJ mol(-1). The DFT-calculated oxidative addition corresponds to an associative S(N)2 nucleophilic attack by the rhodium metal centre on the methyl iodide, which is in agreement with calculated and experimental (in brackets) activation parameters of the reaction, 27 (38.8) kJ mol(-1) for ΔH((≠)) and -147 (-146) J K(-1) mol(-1) for ΔS((≠)).  相似文献   

13.
Insertion reactions of dicyclohexylcarbodiimide with aminoboranes and with aminoboryl and -borylene transition metal complexes have been examined as potential routes to new boron-containing ligand systems. Reactions with systems containing two-coordinate boron centres are found to be significantly more facile than those with three-coordinate substrates. Thus, reaction of (dicyclohexylamino)boron dichloride () with dicyclohexylcarbodiimide over 36 h at 50 degrees C generates the (structurally authenticated) guanidinate complex Cy(2)NC(NCy)(2)BCl(2) () via insertion into the BN bond. By contrast, the corresponding reaction with the cationic aminoborylene complex [CpFe(CO)(2)(BNCy(2))](+)[BAr(f)(4)](-) () proceeds rapidly at ca.-30 degrees C, via initial insertion into the FeB bond to give [CpFe(CO)(2)C(NCy)(2)BNCy(2)](+)[BAr(f)(4)](-) (). Consistent with related studies, a key factor in facilitating such insertion chemistry is thought to be the formation of an initial donor/acceptor complex between the diimide and the group 13 centre. Thus, DFT studies suggest that [CpFe(CO)(2)B(NCy(2))(CyNCNCy)](+)[BAr(f)(4)](-) is a potential intermediate in the reaction of with CyNCNCy, and that further reaction to give the observed product, , is strongly exergic (-183 kJ mol(-1)). By contrast, DFT calculations for the alternative isomer [CpFe(CO)(2)B(CyN)(2)CNCy(2)](+)[BAr(f)(4)](-) (), formed by BN insertion, suggest that it is 112 kJ mol(-1) less stable than . Such experimental and computational findings imply that under reaction conditions where a suitable isomerisation pathway is available, cationic complexes such as , which contain a four-membered boron-donor heterocycle are likely to be disfavoured with respect to alternative C-bound isomers.  相似文献   

14.

The geometries and insertion reactions of germylene derivative H2GeLiCl with R-H (R = F, OH, NH2) have been investigated at the B3LYP/6-311+G* level of theory. The potential barriers of the three reactions are 93.5, 151.3, and 194.1 kJ/mol, including the zero-point vibration energy corrections, respectively. The mechanisms of all the three reactions are identical, i.e., an intermediate has been located during the insertion reaction. The intermediate could dissociate to substituted germylene and LiCl as a barrier process. Correspondingly, the reaction free energies for the three reactions are −7.4, 49.9, and 64.4 kJ/mol, respectively.

  相似文献   

15.
The mechanism of cycloaddition reaction between singlet dimethylmethylenesilylene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy surface, it can be considered in thermodynamics and dynamics that reaction (1) and reaction (4) are the two dominant competitive reaction channels of cycloaddition reaction between dimethylmethylenesilylene and formaldehyde. The reaction process of reaction (1) is that: the two reactants (R1, R2) first form intermediates INT1a and INT1b through two reaction paths, a and b, which are barrier‐free exothermic reactions of 31.8 and 43.9 kJ/mol; then, INT1a and INT1b isomerize to a four‐membered ring product P1 via transition states TS1a and TS1b, with energy barriers of 26.3 and 24.4 kJ/mol. Reaction (4) also has two reaction paths, a and b, each of which consists of three steps are as follows: (i) the two reactants (R1, R2) first form intermediates INT3a and INT3b, which are barrier‐free exothermic reactions of 64.5 and 44.2 kJ/mol. (ii) INT3a and INT3b further react with formaldehyde (R2) to form intermediates INT4a and INT4b, through barrier‐free exothermic reactions of 22.9 and 22.2 kJ/mol. (iii) INT4a and INT4b then isomerize to form silapolycyclic product P4 via transition states TS4a and TS4b, with energy barriers of 39.7 and 29.3 kJ/mol. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
用密度泛函方法研究了钠氟类硅烯插入R_H键(R=F,OH,NH2,CH3)的反应机理.4个反应的机制类似,反应经历了类硅烯的亲电接近、亲核插入和取代三个阶段之后,形成中间络合物,4个反应的势垒分别为0.9,61.7,114.6和190.6kJ/mol(经零点能校正).中间络合物可以解离为取代硅烷和NaF,这是一个无过渡态的过程.反应能分别是-122.6,-96.3,-6.8和50.2kJ/mol.  相似文献   

17.
采用广义梯度密度泛函理论(GGA)的BLYP方法结合周期性平板模型,以原子簇Cu41为模拟表面,对DOPA醌分子在Cu(100)表面不同位置的吸附模型进行了构型优化、能量计算以及Mulliken布居分析,结果表明通过相邻的羰基垂直吸附在表面的桥位是其最佳吸附方式,吸附能为247.2310kJ/mol;其次为顶位、顶位R45和穴位,吸附能分别为227.7162kJ/mol、220.7305kJ/mol和217.8456kJ/mol。Mulliken布居分析结果表明整个吸附体系发生了由Cu原子向DOPA醌分子的电荷转移。  相似文献   

18.
丙烯酸酯类极性单体的聚合反应通常采用自由基型引发剂。过渡金属化合物与烷酸铝所组成的配位催化剂对这类极性单体的催化聚合迄今仍处于研究阶段。我们在稀土催化环氧烷烃聚合的基础上曾研究了稀土钕的磷酸盐体系催化甲基丙烯酸甲酯、正丁酯的聚合。本文研究了环烷酸钕体系催化丙烯酸乙酯及丙烯酸正丁酯的聚合特征。  相似文献   

19.
The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet germylene carbene and acetone has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction of forming germanic bis-heterocyclic compound consists of three steps: (1) the two reactants firstly form an intermediate INT4 through a barrier-free exothermic reaction of 181.4 kJ/mol; (2) INT4 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier-free exothermic reaction of 148.9 kJ/mol; (3) INT5 then isomerizes to a germanic bis-heterocyclic product P5 via a transition state TS5 with an energy barrier of 53.3 kJ/mol.  相似文献   

20.
The geometries and isomerization of the alkylidene germylenoid H2C=GeLiF as well as its insertion reactions with R-H (R = F, OH, NH2, CH3) have been systematically investigated at the B3LYP/6-311+ G* level of theory. The potential barriers of the four insertion reactions are 110.6, 145.0, 179.4, and 250.6 kJ/mol, respectively. Here, all the mechanisms of the four reactions are identical to each other, i.e., an intermediate has been formed first during the insertion reaction. Then, the intermediate could dissociate into the substituted germylene (H2C=GeHR) and LiF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the four reactions are 43.6, 78.8, 113.5, and 128.0 kJ/mol, respectively. Compared with the insertion reaction of H2C= Ge∶ and R-H, the introduction of LiF makes the insertion reaction occur more difficultly. Furthermore, the effects of halogen (F, Cl, Br) substitution and inorganic salts employed on the reaction activity have also been discussed. As a result, the relative reactivity among the four insertion reactions should be as follows: H-F > H-OH > H-NH2 > H-CH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号