首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic layer epitaxy (ALE) is investigated for the growth of CdTe/MnTe superlattices. A systematic structural characterization (X-ray diffraction, transmission electron microscopy), together with a magneto-optical study (reflectivity and photoluminescence), demonstrate that: for MnTe ALE, all deposited Mn atoms are incorporated, so that no autoregulated growth mode can be obtained, in contrast with CdTe ALE, atomic layer epitaxy allows well-controlled CdTe/MnTe superlattices to be achieved but does not prevent the exchange between Cd and Mn atoms which occurs at the interfaces between CdTe and MnTe, as observed in CdTe/MnTe superlattices grown by conventional molecular beam epitaxy.  相似文献   

2.
We study the dependence of absorption wavelength on the well width in the (CdS/ZnSe)/BeTe super-lattices(SL). With well-width reduction, the wavelength decreases from 1.795 to 1.57 μm. Structural properties, strain state and interface composition are determined via XRD measurement. A (CdS/ZnSe)/BexMg1−xTe structure is prepared and XRD reveals the average lattice constant match to GaAs substrate. TEM reveals that numerous stacking faults exist in the (CdS/ZnSe)/BeTe structure, and stacking faults are completely suppressed in (CdS/ZnSe)/BexMg1−xTe SLs. Intersubband transition down to 1.535–1.55 μm have been observed in SLs.  相似文献   

3.
Lattice-type mismatched heteroepitaxy is demonstrated as a novel concept for the fabrication of almost ideal, highly luminescent nanocrystal quantum dots that are coherently embedded in a single-crystalline matrix. In this approach, the formation of quantum dots is induced by transformation of a metastable epitaxial 2D quantum well into an array of isolated nanocrystals with-highly symmetric shape. This process is driven by the lattice-type mismatch between the constituent materials and the resulting miscibility gap. The investigated PbTe/CdTe heterosystem has a model character because it combines two compounds with different cubic lattice types but almost identical lattice constants. The obtained epitaxial nanocrystals exhibit outstanding properties such as a well-defined symmetric shape, the absence of strain, intermixing and a wetting layer, which is in contrast to the conventional Stranski–Krastanow quantum dots. The small-rhomboedric-cubo-octahedron PbTe/CdTe nanocrystals on GaAs substrates display intense room temperature mid-infrared luminescence as is crucial for device applications. Ab initio density functional theory is used to clarify the interface structure, indicating that the covalent and ionic bonding character of CdTe and PbTe is maintained across the interface.  相似文献   

4.
We present an optical study of excited states in single CdTe quantum dot (QDs). Using micro-photoluminescence excitation spectroscopy, absorption up to two confined excited levels have been observed in some dots. Power-dependent micro-photoluminescence is then used to study the occupation of excited states. The emission pattern is characteristic of the increase of the exciton number in the QD (shell-filling). A clear identification of the different multi-exciton complexes has been obtained in a highly symmetric dot. The evolution of the different multi-exciton intensities can then be reproduced by solving the rate equations for multi-exciton state occupancy and the fit by this simple model provides an estimate of the radiative lifetime of the different multi-exciton complexes.  相似文献   

5.
We have studied temperature dependent photoluminescence (PL) from ZnO Multiple Quantum Wells (MQWs) of different well layer thicknesses in the range 1–4 nm grown on (0001) sapphire by a novel in-house developed buffer assisted pulsed laser deposition. At 10 K the PL peak shifted toward blue with decreasing well layer thickness and at constant well layer thickness the PL peak shifted towards red with increasing temperature. To the best of our knowledge we have observed for the first time an efficient room temperature (RT) PL emanating from such MQWs. The red shift of the PL peak with increasing temperature has been found to be due to the band gap shrinkage in accordance with the Varshni’s empirical relation. The spectral linewidth was found to increase with increasing temperature due to the scattering of excitons with acoustic and optical phonons in different temperature regimes. Both at RT and at 10 K the PL peak shifted with respect to the well layer thickness in the range of 3.35–3.68 eV with decreasing thickness in agreement with the calculated values.  相似文献   

6.
Tanigaki  T.  Saito  Y.  Nakada  T.  Tsuda  N.  Kaito  C. 《Journal of nanoparticle research》2002,4(1-2):83-90
Ultrafine particles of typical chalcogenides have been produced by the advanced gas evaporation method (AGEM) and characterized by transmission electron microscopy. Zinc-blende nanoparticles less than 20-nm in size covered with SiO or carbon layer have been predominately produced. Many growth faults were observed in the zinc-blende particles above 20-nm in size. It has been found that particles less than 10-nm in size have no growth faults.  相似文献   

7.
Effect of thermal annealing on ZnO:Al thin films grown by spray pyrolysis   总被引:2,自引:0,他引:2  
We report the effect of thermal annealing in air on the structural and optical properties of undoped and aluminium-doped (1%–4%) zinc oxide (AZO) thin films, grown by the spray pyrolysis technique on quartz substrates. Films were characterized by X-ray diffraction, low-temperature photoluminescence, electrical resistivity, and Raman spectroscopy after annealing at temperatures between 500 and 900 C. Annealing in air improves the long-range order crystalline quality of the bulk crystals, but promotes a number of point defects in the surface affecting both the resistivity and the photoluminescence.  相似文献   

8.
Hexagonal-shaped small ZnO nanorods were grown in a large-quantity via simple aqueous solution process by using zinc nitrate as a source of zinc ions at low temperature under stirring. The as-grown hexagonal-shaped ZnO nanorods were characterized in detail in terms of their structural, optical and photovoltaic properties. The detailed structural investigations by HRTEM, SAED and FFT revealed that the as-synthesized ZnO nanorods are well-crystalline, possessing a perfect hexagonal ideal growth habits of wurtzite zinc oxide and grown along the [0001] direction in preference. The optical properties, composition and quality of the as-synthesized nanorods were examined by using UV-visible and FTIR spectroscopy. Moreover, films of as-grown nanorods were used as photoanode materials to fabricate the dye sensitized solar cells (DSSCs). An overall light to electricity conversion efficiency of 0.70% with a fill factor of 47.2%, short-circuit current of 1.8 mA/cm2 and open-circuit voltage of 0.76 V were achieved for the solar cell based on hexagonal-shaped small ZnO nanorods.  相似文献   

9.
Optical and electrical characteristics of n–i–n InGaAs/GaAs quantum-dot (QD) infrared photodetectors are reported. In particular, the low-frequency excess electrical noise is measured at room temperature and analyzed in conjunction with the optical properties of the structure. The three stackings of QD were formed by atomic layer molecular-beam epitaxy and highly Si-doped, and AlGaAs current-blocking layer was also included to reduce the dark current. The power-dependent photoluminescence (PL) spectra at 300 K indicates that there are at least three confined states in the QD. The photo-current was observed only at low temperatures (10 K) at wavelengths between 3 and 9 μm with three peaks. The dark current was relatively large and asymmetric at low temperatures. At room temperature the dark current was symmetric and ohmic. The 1/f-like low-frequency noise spectral density exhibited an almost quadratic current dependence giving a large value of the Hooge parameter of the order of unity. The relatively low-growth temperature for the AlGaAs current blocking layer and the high doping at the quantum dots seem to generate a considerable amount of defects and result in low-temperature photodetection and a large low-frequency noise density.  相似文献   

10.
Magneto-transport and magneto-optical probes are used to interrogate spin-dependent transport in magnetic heterostructures wherein a two dimensional electron gas (2DEG) is exchange-coupled to local moments. At low temperatures, the significant s–d exchange-enhanced spin splitting in these “magnetic” 2DEGs is responsible for the observation of unusual transport properties such as a complete spin polarization of the gas at large Landau level filling factors and a pronounced, non-monotonic background magneto-resistance. Magneto-transport measurements of gated samples performed in a parallel field geometry are used to systematically study the variation of the magneto-resistance with sheet concentration, yielding new insights into the dependence of spin transport on the Fermi energy of the majority spin carriers.  相似文献   

11.
Al0.91Ga0.09N epilayers have been obtained by pulsed atomic layer epitaxy (PALE) technique on sapphire (0 0 0 1) substrates. Deep ultraviolet (DUV) photoluminescence (PL) spectroscopy and Raman scattering spectrum have been employed to study the optical transitions in Al0.91Ga0.09N epilayers. We found the exciton-phonon interaction by fitting the asymmetric PL peak, in which the transverse optical phonon (TO) and the longitudinal optical (LO) phonon are the main contributor. The abnormal S-shaped temperature dependence of the PL band peak is less pronounced or has disappeared. Further analysis shows that there possibly exists a high density of deeper localized state (∼90 meV) in Al0.91Ga0.09N. The formation of these localized states provides a favorable condition for efficient light emission.  相似文献   

12.
分别应用光致发光、电容电压和深能级瞬态傅里叶谱技术详细研究ZnSe自组织量子点样品的光学和电学行为.光致发光温度关系表明ZnSe量子点的光致发光热猝火过程机理.两步猝火过程的理论较好模拟和解释了相关的实验数据.电容电压测量表明样品表观载流子积累峰出现的深度(样品表面下约100nm处)大约是ZnSe量子点层的位置.深能级瞬态傅里叶谱获得的ZnSe量子点电子基态能级位置为ZnSe导带下的011eV,这与ZnSe量子点光致发光热猝火模型得到的结果一致.  相似文献   

13.
14.
A set of SnTe/Sn1−xEuxTe superlattice (SL) samples with increasing nominal Eu content x up to 0.28 was successfully grown on (1 1 1) BaF2 substrates by molecular beam epitaxy. A complete structural characterization was performed by triple-axis X-ray diffractometry and reciprocal space mapping. The X-ray results showed that, despite the phase separation that normally occurs for unstrained Sn1−xEuxTe layers with x0.02, an SL stack with homogeneous individual layers can be formed for SL samples with a nominal Eu content up to 0.16. No SL satellite peak structure could be identified for samples with x values higher than 0.24. The structural parameters of the individual layers that compose the SL were determined using a best-fit simulation procedure which compared the calculated X-ray spectra to the measured (2 2 2) ω/2Θ scans. The strain information used in the simulation was obtained from the reciprocal space maps measured around the (2 2 4) lattice point.  相似文献   

15.
16.
Preparation and photoluminescence of Sc-doped ZnO nanowires   总被引:3,自引:0,他引:3  
We demonstrate bulk synthesis of single-crystal Sc-doped ZnO nanowires by using (Sc+Zn) powders at . These mass nanowires are characterized through X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction, and high-resolution TEM, which have uniform diameters of about 40 nm and microns of several decades in length. The growth of ZnScO nanowires is suggested for self-catalyzed vapor–liquid–solid. In particular, PL spectra of these nanowires show emission peaks that intensely shift to long wavelength with increasing Sc and the doping quantity is found responsible for the different characteristics, in which PL mechanism is explained in detail.  相似文献   

17.
CdTe films have been grown on top of GaAs(100) by means of Molecular Beam Epitaxy (MBE) at 300 °C substrate temperature. Different procedures for the CdTe growth and for the preparation of the GaAs substrates resulted in diverse crystalline qualities of the CdTe films. We present the results obtained from PhotoReflectance (PR) measurements of these films employing HeNe and Ar-ion lasers as modulating excitation. For Ar excitation, the ratio of CdTe to GaAs signal strength for the E 0 transition is enhanced, allowing a differentiation of the contributions from film and substrate. Both the PR line shape and intensity are correlated to the structural quality of the CdTe films. One of the samples presented a below-band-gap transition of the GaAs substrate around 30±5 meV from E 0 which is attributed to donor states produced by Te atoms diffused in the interface; this result demonstrates the high sensitivity of the photoreflectance technique to the structural properties of interfaces.  相似文献   

18.
The electrical and the optical properties of InAs/GaAs quantum dots (QDs) grown by using atomic layer epitaxy (ALE) technique were investigated by using capacitance-voltage (C-V) and photoluminescence (PL) measurements. C-V curves showed that the plateaus related to the zero-dimensional carrier confinement effect existed and that the number of electrons occupying the InAs QD was approximately 7. The full width at half maxima of the interband transitions from the ground electronic subband to the ground heavy-hole subband and from the first excited electronic state to the first excited state heavy-hole subband were not significantly affected by the temperature variation, indicative of strong confinement of the carriers occupying the InAs QDs. These results can help improve understanding for applications of InAs/GaAs QDs grown by using ALE in high-efficiency electronic and optoelectronic devices.  相似文献   

19.
Mercury selenide and its ternary and quaternary modifications in the form Hg(A,B)Se with A, B magnetic ions, provide an interesting semiconductor family featuring different kinds of correlation effects. These effects manifest themselves already in three-dimensional, quasi-two-dimensional, and quasi-one-dimensional structures. We have succeeded now in fabricating HgSe:Fe quantum dots using three different growing procedures based on molecular beam epitaxy: (a) Stranski–Krastanov growth; (b) thermally activated surface reorganization; (c) pit filling. The special feature of the HgSe:Fe dots is the intrinsic population of the dot states by electrons, where a large amount of about 50–500 electrons form a many-electron system within a single dot. The formation of the dots was controlled in situ by RHEED. The morphology of the resulting structures was characterized by AFM. Subsequently, the electronic properties of the dots were investigated by megagauss magneto spectroscopy, indicating the presence of strong correlation effects as manifested in a 50% increase of the cyclotron mass in respect to that of structures with a higher dimensionality.  相似文献   

20.
We have studied the polariton relaxation dynamics in a CdTe microcavity at low temperatures after resonant excitation into the upper polariton branch (UPB). Initially, we have set a negative exciton–cavity detuning, such that the energy difference between the two polariton branches coincides with that of an LO phonon. Our experimental results reveal a sublinear dependence of the integrated emission from the lower polariton branch (LPB) with excitation power. This evidences not only an inefficient LO phonon mediated relaxation from the UPB to the LPB but also a substantial inhibition of polariton relaxation along the LPB. After that, we have progressively reduced the negative detuning, approaching the exciton–cavity resonance. Under these conditions it is possible to observe a nonlinear emission arising from K0 LPB-states similar to that observed after nonresonant excitation. Marked oscillations are present in the time evolution traces, with a period that does not depend on excitation power or detuning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号